ZPRAVODA]

Ceskoslovenského sdruzeni uzivatelt TgXu

1-2

2017

ISSN 1211-6661 ISSN 1213-8185 Ro¢nik 27

Tisténa verze Online verze

OBSAH

Petr Sojka: Uvodnik 1
Hans Hagen: CONTEXT-LUA Documents 3
Hans Hagen: Exporting XML and ePub from CONTEXT 55
Hans Hagen, Idris Samawi Hamid: Oriental TEX: Optimizing Paragraphs 64
Taco Hoekwater: MetaPost: PNG Output 98
Ales Kozubik: Mapy v ¥ TEXovych dokumentoch —

predstavenie balicka getmap 101
Vit Novotny: Konference TUG@BachoTEX 2017 110

Zpravodaj ceskoslovenského sdruzeni uzivatela TEXu je vydavan v tisténé podobé a dis-
tribuovan zdarma ¢lentim sdruzeni. Po uplynuti dvanacti mésict od tisténého vydani
je poskytovan v elektronické podobé (PDF) ve vefejné piistupném archivu dostupném
pres http://www.cstug.cz/.

Své prispévky do Zpravodaje muzete zasilat v elektronické podobé, nejlépe jako jeden
archivni soubor (.zip, .arj, .tar.gz). Postupujte podle instrukci, které najdete na
strance http://bulletin.cstug.cz/. Nezapomente prilozit vSechny soubory, které
dokument naéitd (s vyjimkou standardnich souc¢asti TgX Live), zejména v pripadé, kdy
vas nelze kontaktovat e-mailem.

ISSN 1211-6661 (tisténd verze)
ISSN 1213-8185 (online verze)

Uvodnik

| PETR SOJKA I

Milé ¢tendrky a Ctendfi, priznivei kvalitni typografie sdzecim systémem TgX,
je mi potésenim psat tvodnik k novému ¢islu naseho Zpravodaje, ktery vychazi
dle planu nové redakéni rady:

if mame v bfeznu v bufferu nemalo ¢lanka then
vydame ¢islo a vyprazdnime buffer

end if

if mame v cervnu v bufferu nemélo ¢lankt then
vyddme [jedno—dvoj|¢islo a vypréazdnime buffer

end if

if mame v zafi v bufferu nemalo ¢lankd then
vydame [jedno—troj]éislo a vyprdzdnime buffer

end if

V listopadu vyddme [jedno—¢tyf]éislo a vyprazdnime buffer.

Zafungovala druhd podminka, v bufferu jsme méli ¢lanku skoro na trojcislo, a
nékteré jiz ¢ekaji na vydani v dalsim c¢isle. Diky nové redakéni radé za akvizici
¢lankt a jejich rychlé sesazeni v dobé prazdnin. Nebojte se posilat dalsi ¢lanky,
sdilejte svd makra, své zkusenosti s uzitim TEXovych technologii na vasich skolach,
ve vasich firméch, na vaSich pracovistich.

Vsichni kolektivni ¢lenové a individudlni ¢lenové, ktefi si o né napsali, maji
k ¢islu pribaleno DVD TgXlive, opét s aktualizovanou cesko-slovenskou dokumen-
taci. Prestoze mnozi ¢lenové se aktivné podili a budou podilet na aktualizacich a
pripravé hlavni TEXové distribuce, vybor sdruzeni se rozhodl jiz neposilat DVD
pausalné vSem c¢leniim, nebot vétsina ma dostupné vysokorychlostni pripojeni a
naopak nema DVD mechaniku.

V cisle najdete nékolik prispévki holandskych kolegii Hanse Hagena a Taca
Hoekwatera, vyvijejicich relativné novy makrobalik ConTEXt, a experimentujicich
s moznostmi, které pridava imperativni jazyk Lua spolu s novymi rozsirenimi
programu MetaPost. Jde o ¢lanky:

o ConTgXt-Lua Documents Hanse Hagena,

e FExporting XML and ePub from ConTgXt téhoz autora,

e Oriental TEX: Optimizing Paragraphs autori Hanse Hagena, Idris Samawi

Hamida a

e MetaPost: PNG Output Taco Hoekwatera.

Ctendi tak miize po precteni své MetaPost obrazky ukladat ve formatu PNG,
sazet Koran v arabstiné po vzoru arabskych kaligrafu, exportovat své dokumenty

—_

do forméath ctecek elektronickych knih nebo v jazyce Lua své dokumenty piimo
programovat.

Praktické tloze, jak vlozit Google mapu do dokumentu, se vénuje clanek Mapy
v BTEpXovijch dokumentoch — predstavenie balicka getmap Alese Kozubika.

Cislo kond zprévou z konference TUG@BachoTEX 2017. Tu kromé autora
prispévku a autora tivodniku navstivili dalsi t¥i ¢lenové naseho sdruzeni. Ze tii
zde prezentovanych piispévkil ¢lentt (FI'UGu byla prezentace dvou podpofena
finanéné. Dvoukonference byla dobte navstivena, jak vidite na spole¢né fotce
ucastnikl v ¢lanku Vita Novotného. Vse probihalo v obvyklé srde¢né atmosfére
starych i novych pratel TEXové rodiny. Soudrznost a stilost rodiny ukazuje i
to, ze skoro desitka ucastnikt akce navstivila pred ¢tvrt stoletim jiz konferenci
EuroTEX 92 v Praze, coz byl velky impuls k rozsiteni a rozkvétu TeXovych aktivit
v Ceskoslovensku.

Uvodnik pisi na malé plachetnici u Vancouveru, kde nds s technickym redak-
torem tohoto ¢isla pan kapitan instruoval na co slouzi pismeno T na velkych
lodich a tankerech. Je to misto, kam tug boat — malé, ale vykonnd lod — tlac¢i ¢i
tahd velkou lod s velkou setrvacnosti a tonédzi tak, aby se drzela ¢i zakotvila na
spravném misté.

Preji TEXovému tankeru, aby lokdlni skupiny uzivateli vytvarely malé, ale
vykonné lodky, tugboaty ¢i Zpravodaje, které by spravnym kotvenim a smérovanim
CtyTicetiletého mohutného plavidla prinasely stéle uzitek.

Summary: Introduction

Editorial discusses (JT'UG’s new publishing policy and comments on this is-
sue’s articles. Go forth and participate in T'UG to make the bright future of
TEX & Friends a reality! You can/

Masarykova univerzita, Fakulta informatiky, Botanickd 68a, 602 00 Brno
sojka@fi. muni. cz

ConTEXt—Lua Documents

‘l HANS HAGEN I

In CONTEXT, it is now possible to prepare documents in a mixture of TEX,
XML, METAPOST, and LUA. The article gives a short introduction into the
programming language of LUA and then goes on to describe how LUA can be
used for programming in CONTEXT MKIV.

Keywords: Lua, LUATEX, CoNTEXT, MKIV

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the
backslashed commands that determine your output. Of course, when alternatives
are being discussed every one has a favourite programming language. In practice
coding a document in each of them triggers similar sentiments with regards to
coding as TEX itself does.

So, just for fun, I added a couple of commands to CONTEXT MKIV that
permit coding a document in LUA. In retrospect it has been surprisingly easy to
implement a feature like this using metatables. Of course it’s a bit slower than
using TEX as input language but sometimes the LUA interface is more readable
given the problem at hand.

After a while I decided to use that interface in non-critical core CONTEXT
code and in styles (modules) and solutions for projects. Using the LUA approach
is sometimes more convenient, especially if the code mostly manipulates data.
For instance, if you process XML files of database output you can use the interface
that is available at the TEX end, or you can use LUA code to do the work, or you
can use a combination. So, from now on, in CONTEXT you can code your style
and document source in (a mixture of) TEX, XML, METAPOST and in LUA.

In the following pages I will introduce typesetting in LUA, but as we rely on
CONTEXT it is unavoidable that some regular CONTEXT code shows up. The
fact that you can ignore backslashes does not mean that you can do without
knowledge of the underlying system. I expect that the user is somewhat familiar
with this macro package. Some chapters are follow ups on articles or earlier
publications.

Although much of the code is still experimental it is also rather stable. Some
helpers might disappear when the main functions become more clever. This
manual is definitely far from complete. If you find errors, please let me know. If
you think that something is missing, you can try to convince me to add it.

w

por: 10.5300/2017-1-2/3

A bit of Lua

The language

Small is beautiful and this is definitely true for the programming language LUA
(moon in Portuguese). We had good reasons for using this language in LUATEX:
simplicity, speed, syntax and size to mention a few. Of course personal taste
also played a role and after using a couple of scripting languages extensively the
switch to LUA was rather pleasant.

As the LUA reference manual is an excellent book there is no reason to discuss
the language in great detail: just buy ‘Programming in LUA’ by the LUA team.
Nevertheless I will give a short summary of the important concepts but consult
the book if you want more details.

Data types

The most basic data type is nil. When we define a variable, we don’t need to
give it a value:

local v

Here the variable v can get any value but till that happens it equals nil. There
are simple data types like numbers, booleans and strings. Here are some
numbers:

1+2 %3
2.3
Numbers are always floats! and you can use the normal arithmetic operators
on them as well as functions defined in the math library. Inside TEX we have
only integers, although for instance dimensions can be specified in points using
floats but that’s more syntactic sugar. One reason for using integers in TEX
has been that this was the only way to guarantee portability across platforms.
However, we're 30 years along the road and in LUA the floats are implemented
identical across platforms, so we don’t need to worry about compatibility.
Strings in LUA can be given between quotes or can be so called long strings
forced by square brackets.

local n
local x

local s = "Whatever"

local t = s .. ' you want'

local u =t .. [[to know]] .. [[--[about Lua!]--1]

The two periods indicate a concatenation. Strings are hashed, so when you say:
local s = "Whatever"

local t = "Whatever"

local u = t

IThis is true for all versions upto 5.2 but following version can have a more hybrid model.

only one instance of Whatever is present in memory and this fact makes Lua
very efficient with respect to strings. Strings are constants and therefore when
you change variable s, variable t keeps its value. When you compare strings, in
fact you compare pointers, a method that is really fast. This compensates the
time spent on hashing pretty well.

Booleans are normally used to keep a state or the result from an expression.
local b = false
local ¢ = n > 10 and s == "whatever"
The other value is true. There is something that you need to keep in mind when
you do testing on variables that are yet unset.
local b = false
local n
The following applies when b and n are defined this way:

b == false true
n == false false
n == nil true
b == nil false
b==n false

Often a test looks like:
if somevar then

else

end

In this case we enter the else branch when somevar is either nil or false. It also
means that by looking at the code we cannot beforehand conclude that somevar
equals true or something else. If you want to really distinguish between the two
cases you can be more explicit:

if somevar == nil then

elseif somevar == false then
else

end
or
if somevar == true then

else

end
but such an explicit test is seldom needed.

There are a few more data types: tables and functions. Tables are very
important and you can recognize them by the same curly braces that make TEX
famous:

local t = {1, 2, 3 }
localu={a=4,b=9, c=16 1}
local v = { [1] = "a", [3] = "2", [4] = false }
localw={1, 2, 3, a=4,b=9, c =16 }

The t is an indexed table and u a hashed table. Because the second slot is
empty, table v is partially indexed (slot 1) and partially hashed (the others).
There is a gray area there, for instance, what happens when you nil a slot in an
indexed table? In practice you will not run into problems as you will either use
a hashed table, or an indexed table (with no holes), so table w is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment
of a string to a variable makes that variable behave like a constant. Contrary to
that, when you assign a table, and then copy that variable, both variables can
be used to change the table. Take this:
local t = {1, 2, 3}
local u t
We can change the content of the table as follows:

t[1], t[3] = t[3], t[1]

Here we swap two cells. This is an example of a parallel assigment. However,
the following does the same:

t[11, t[3] = ul3], ul1]

After this, both t and u still share the same table. This kind of behaviour is
quite natural. Keep in mind that expressions are evaluated first, so

t[#t+1], t[#t+1] = 23, 45

makes no sense, as the values end up in the same slot. There is no gain in speed
so using parallel assignments is mostly a convenience feature.

There are a few specialized data types in LUA, like coroutines (built in),
file (when opened), 1peg (only when this library is linked in or loaded). These
are called ‘userdata’ objects and in LUATEX we have more userdata objects as
we will see in later chapters. Of them nodes are the most noticeable: they are
the core data type of the TEX machinery. Other libraries, like math and bit32
are just collections of functions operating on numbers.

Functions look like this:

function sum(a,b)
print(a, b, a + b)

end
or this:
function sum(a,b)
return a + b

end
There can be many arguments of all kind of types and there can be multiple
return values. A function is a real type, so you can say:
local f = function(s) print("the value is: " .. s) end

In all these examples we defined variables as local. This is a good practice
and avoids clashes. Now watch the following:
local n =1

function sum(a,b)
n=n+1
return a + b
end

function report()

print ("number of summations: " .. n)
end
Here the variable n is visible after its definition and accessible for the two global
functions. Actually the variable is visible to all the code following, unless of
course we define a new variable with the same name. We can hide n as follows:
do

local n =1

sum = function(a,b)
n=n+1
return a + b

end

report = function()
print ("number of summations: " .. n)

end
end
This example also shows another way of defining the function: by assignment.

The do ... end creates a so called closure. There are many places where

such closures are created, for instance in function bodies or branches like if ...
then ... else. This means that in the following snippet, variable b is not seen
after the end:
if a > 10 then

local b = a + 10

print (b*b)
end
When you process a blob of LUA code in TEX (using \directlua or \latelua)
it happens in a closure with an implied do ... end. So, local defined variables

are really local.

TEX’s data types

We mentioned numbers. At the TEX end we have counters as well as dimensions.
Both are numbers but dimensions are specified differently

local n = tex.count[0]

local m = tex.dimen.lineheight

local o = tex.sp("10.3pt") -- scaled point is the smallest unit

The unit of dimension is ‘scaled point’ and this is a pretty small unit: 10 points
equals to 655360 such units.

Another accessible data type is tokens. They are automatically converted to
strings and vice versa.
tex.toks[0] = "message"
print(tex.toks[0])
Be aware of the fact that the tokens are letters so the following will come out as
text and not issue a message:
tex.toks[0] = "\message{just textl}"
print(tex.toks[0])

Control structures
Loops are not much different from other languages: we have for ... do, while
... do and repeat ... until. We start with the simplest case:
for index=1,10 do
print (index)
end
You can specify a step and go downward as well:
for index=22,2,-2 do
print (index)
end
Indexed tables can be traversed this way:
for index=1,#list do
print (index, list([index])
end
Hashed tables on the other hand are dealt with as follows:

for key, value in next, list do

print (key, value)
end
Here next is a built in function. There is more to say about this mechanism but
the average user will use only this variant. Slightly less efficient is the following,
more readable variant:
for key, value in pairs(list) do

print (key, value)
end
and for an indexed table:
for index, value in ipairs(list) do

print(index, value)
end
The function call to pairs(list) returns next, list so there is an (often neg-
lectable) extra overhead of one function call.

The other two loop variants, while and repeat, are similar.

i=0
while i < 10 do

i=1i+1

print (i)
end
This can also be written as:
i=0
repeat

i=1i+1

print (i)
until i == 10
or:
i=0
while true do

i=1i+1

print (i)

if i == 10 then

break

end
end
Of course you can use more complex expressions in such constructs.

Conditions
Conditions have the following form:
if a == b or ¢ > d or e then

elseif f == g then
else

end

Watch the double ==. The complement of this is ~=. Precedence is similar to
other languages. In practice, as strings are hashed, tests like

if key == "first" then

end
and
if n == 1 then

end

are equally efficient. There is really no need to use numbers to identify states
instead of more verbose strings.

Namespaces

Functionality can be grouped in libraries. There are a few default libraries, like
string, table, lpeg, math, io and os and LUATEX adds some more, like node,
tex and texio.

A library is in fact nothing more than a bunch of functionality organized
using a table, where the table provides a namespace as well as place to store
public variables. Of course there can be local (hidden) variables used in defining
functions.
do

mylib = { }

local n = 1

function mylib.sum(a,b)
n=n+1
return a + b

end

function mylib.report()

10

n . n)

print ("number of summations:
end
end
The defined function can be called like:
mylib.report()
You can also create a shortcut, This speeds up the process because there are less
lookups then. In the following code multiple calls take place:

local sum = mylib.sum

for i=1,10 do
for j=1,10 do
print(i, j, sum(i,j))
end
end

mylib.report()

As LUA is pretty fast you should not overestimate the speedup, especially not
when a function is called seldom. There is an important side effect here: in the
case of:

print(i, j, sum(i,j))

the meaning of sum is frozen. But in the case of

print(i, j, mylib.sum(i,j))

the current meaning is taken, that is: each time the interpreter will access mylib
and get the current meaning of sum. And there can be a good reason for this,
for instance when the meaning is adapted to different situations.

In CONTEXT we have quite some code organized this way. Although much
is exposed (if only because it is used all over the place) you should be careful
in using functions (and data) that are still experimental. There are a couple of
general libraries and some extend the core LUA libraries. You might want to
take a look at the files in the distribution that start with 1-, like 1-table.lua.
These files are preloaded.? For instance, if you want to inspect a table, you can
say:
local t = { "aap",
table.print (t)
You can get an overview of what is implemented by running the following com-
mand:

"noot", "mies" }

context s-tra-02 -—-mode=tablet

2In fact, if you write scripts that need their functionality, you can use mtxrun to process
the script, as mtxrun has the core libraries preloaded as well.

11

Comment

You can add comments to your LUA code. There are basically two methods:
one liners and multi line comments.

local option "test" -- use this option with care

local method = "unknown" --[[comments can be very long and when
entered this way they can span multiple lines]]

The so called long comments look like long strings preceded by -- and there can

be more complex boundary sequences.

Pitfalls

Sometimes nil can bite you, especially in tables, as they have a dual nature:
indexed as well as hashed.

\startluacode

local nl = # { nil, 1, 2, nil } -3

local n2 = # { nil, nil, 1, 2, nil } - 0

context("nl = %s and n2 = %s",nl1,n2)
\stopluacode
results in: nl = 3 and n2 = 0. So, you cannot really depend on the length
operator here. On the other hand, with:
\startluacode
local function check(...)
return select("#",...)

end
local nl = check (nil, 1, 2, nil) -- 4
local n2 = check (nil, nil, 1, 2, nil) - 5

context("nl = %s and n2 = %s",nl1,n2)
\stopluacode
we get: nl =4 and n2 = 5, so the select is quite useable. However, that function
also has its specialities. The following example needs some close reading;:
\startluacode
local function filter(m,...)
return select(n,...)
end

local v1 = { filter (1, 1, 2,
2

3)}
local v2 { filter (2, 1, 3) %}

>

12

local v3 = { filter (3, 1, 2, 3) }

context("vl = %+t and v2 = %+t and v3 = ¥%+t",v1,v2,v3)
\stopluacode

We collect the result in a table and show the concatenation: vl = 14243 and
v2 = 243 and v3 = 3. So, what you effectively get is the whole list starting with
the given offset.

\startluacode
local function filter(n,...)

return (select(n,...))
end
local vl = { filter (1, 1, 2, 3) }
local v2 = { filter (2, 1, 2, 3) }
local v3 = { filter (3, 1, 2, 3) }

context("vl = %+t and v2 = %+t and v3 = J+t",v1,v2,v3)
\stopluacode
Now we get: vl = 1 and v2 = 2 and v3 = 3. The extra () around the result
makes sure that we only get one return value.

Of course the same effect can be achieved as follows:

local function filter(m,...)
return select(n,...)

end

local vl = filter (1, 1, 2, 3)

local v2 = filter (2, 1, 2, 3)

local v3 = filter (3, 1, 2, 3)

context("vl = %s and v2 = %s and v3 = %s",vl,v2,v3)

A few suggestions
You can wrap all kind of functionality in functions but sometimes it makes no
sense to add the overhead of a call as the same can be done with hardly any
code.

If you want a slice of a table, you can copy the range needed to a new table.
A simple version with no bounds checking is:
local new = { } for i=a,b do new[#new+1] = o0ld[i] end
Another, much faster, variant is the following.
local new = { unpack(old,a,b) }

13

You can use this variant for slices that are not extremely large. The function
table.sub is an equivalent:
local new = table.sub(old,a,b)
An indexed table is empty when its size equals zero:
if #indexed == 0 then ... else ... end
Sometimes this is better:
if indexed and #indexed == O then ... else ... end
So how do we test if a hashed table is empty? We can use the next function as
in:
if hashed and next(indexed) then ... else ... end
Say that we have the following table:
local t = { a=1, b=2, c=3 }
The call next (t) returns the first key and value:
local k, v = next(t) -— "a", 1
The second argument to next can be a key in which case the following key and

value in the hash table is returned. The result is not predictable as a hash is
unordered. The generic for loop uses this to loop over a hashed table:

for k, v in next, t do

end
Anyway, when next (t) returns zero you can be sure that the table is empty.
This is how you can test for exactly one entry:
if t and not next(t,next(t)) then ... else ... end
Here it starts making sense to wrap it into a function.
function table.has_one_entry(t)
t and not next(t,next(t))
end
On the other hand, this is not that usefull, unless you can spend the runtime on
it:
function table.is_empty(t)
return not t or not next(t)
end

Interfacing
We have already seen that you can embed LUA code using commands like:
\startluacode
print("this works")
\stopluacode

14

This command should not be confused with:
\startlua

print("this works")
\stoplua
The first variant has its own catcode regime which means that tokens between
the start and stop command are treated as LUA tokens, with the exception of
TEX commands. The second variant operates under the regular TEX catcode
regime.

Their short variants are \ctxluacode and \ctxlua as in:
\ctxluacode{print("this works")}

\ctxlua{print ("this works")}

In practice you will probably use \startluacode when using or defining a blob
of LUA and \ctx1lua for inline code. Keep in mind that the longer versions need
more initialization and have more overhead.

There are some more commands. For instance \ctxcommand can be used as
an efficient way to access functions in the commands namespace. The following
two calls are equivalent:

\ctxlua {commands.thisorthat("...")}
\ctxcommand {thisorthat("...")}
There are a few shortcuts to the context namespace. Their use can best be
seen from their meaning;:
\cldprocessfile#1{\directlua{context.runfile("#1")}}
\cldloadfile #1{\directlua{context.loadfile("#1")}}
\cldcontext #1{\directlua{context (#1)}}
\cldcommand #1{\directlua{context.#1}}
Each time a call out to LUA happens the argument eventually gets parsed, con-
verted into tokens, then back into a string, compiled to bytecode and executed.
The next example code shows a mechanism that avoids this:
\startctxfunction MyFunctionA

context (" A1 ")
\stopctxfunction

\startctxfunctiondefinition MyFunctionB
context(" B2 ")
\stopctxfunctiondefinition

The first command associates a name with some LUA code and that code can
be executed using:

\ctxfunction{MyFunctionA}
The second definition creates a command, so there we do:
\MyFunctionB

15

There are some more helpers but for use in document sources they make less
sense. You can always browse the source code for examples.

Getting started

Some basics

I assume that you have either the so called CONTEXT standalone (formerly
known as minimals) installed or TEXLIVE. You only need LUATEX and can
forget about installing PDFTEX or XHTEX, which saves you some megabytes
and hassle. Now, from the users perspective a CONTEXT run goes like:
context yourfile

and by default a file with suffix tex, mkiv, or mkvi will be processed. There are
however a few other options:

context yourfile.xml

context yourfile.rlx --forcexml

context yourfile.lua

context yourfile.pqr --forcelua

context yourfile.cld

context yourfile.xyz --forcecld

context yourfile.mp

context yourfile.xyz —--forcemp

When processing a LUA file the given file is loaded and just processed. This
options will seldom be used as it is way more efficient to let mtxrun process that
file. However, the last two variants are what we will discuss here. The suffix
cld is a shortcut for CONTEXT LUA Document.

A simple c1d file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext ()
So yes, you need to know the CONTEXT commands in order to use this mecha-
nism. In spite of what you might expect, the codebase involved in this interface
is not that large. If you know CONTEXT, and if you know how to call commands,
you basically can use this LUA method.

The examples that I will give are either (sort of) standalone, i.e. they are
dealt with from LUA, or they are run within this document. Therefore you will
see two patterns. If you want to make your own documentation, then you can
use this variant:

\startbuffer
context("See this!")
\stopbuffer

16

\typebuffer \ctxluabuffer

I use anonymous buffers here but you can also use named ones. The other variant
is:

\startluacode

context("See this!")

\stopluacode

This will process the code directly. Of course we could have encoded this docu-
ment completely in LUA but that is not much fun for a manual.

The main command

There are a few rules that you need to be aware of. First of all no syntax checking
is done. Second you need to know what the given commands expects in terms
of arguments. Third, the type of your arguments matters:

nothing : just the command, no arguments
string : an argument with curly braces
array : a list between square brackets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")

context.startchapter({ title = "Some title", label = "first" })
This blob of code is equivalent to:
\chapter{Some title}
\chapter [first]{Some title}

\startsection[title={Some title},label=first]
You can simplify the third line of the LUA code to:
context.startchapter { title = "Some title", label = "first" }

In case you wonder what the distinction is between square brackets and curly
braces: the first category of arguments concerns settings or lists of options or
names of instances while the second category normally concerns some text to be
typeset.

Strings are interpreted as TEX input, so:
context.mathematics("\\sqrt{273}")
and if you don’t want to escape:
context.mathematics([[\sqrt{2°3}11)

17

are both correct. As TEX math is a language in its own and a de-facto standard
way of inputting math this is quite natural, even at the LUA end.

Spaces and Lines
In a TEX file, spaces and newline characters are collapsed into one space. The
same happens in LUA. Compare the following examples. First we omit spaces:
context ("left")
context ("middle")
context ("right")
resulting in: leftmiddleright. Next we add spaces:
context ("left")
context (" middle ")
context ("right")
resulting in: left middle right. We can also add more spaces:
context ("left ")
context (" middle ")
context (" right")
resulting in: left middle right. In principle all content becomes a stream and after
that the TEX parser will do its normal work: collapse spaces unless configured
to do otherwise.
Now take the following code:
context ("before")
context ("word 1")
context ("word 2")
context ("word 3")
context ("after")
resulting in: beforeword 1word 2word 3after. Here we get no spaces between the
words at all, which is what we expect. So, how do we get lines (or paragraphs)?
context ("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context ("after")
results in: before

line 1line 2line 3

after.

18

This does not work out well, as again there are no lines seen at the TEX end.
Newline tokens are injected by passing true to the context command:
context ("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)
context("line 3") context(true)
context.stoplines()
context("after")
resulting in: before

line 1
line 2
line 3

after. Don’t confuse this with:
context ("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()
which results in: before

line 1

line 2

line 3

after. There we use the regular \par command to finish the current paragraph
and normally you will use that method. In that case, when set, whitespace will
be added between paragraphs.

This newline issue is a somewhat unfortunate inheritance of traditional TEX,
where \n and \r mean something different. I'm still not sure if the CcLD do
the right thing as dealing with these tokens also depends on the intended effect.
Catcodes as well as the LUATEX input parser also play a role. Anyway, the
following also works:
context.startlines()
context("line 1\n")
context("line 2\n")
context("line 3\n")
context.stoplines()

Direct output
The CONTEXT user interface is rather consistent and the use of special input
syntaxes is discouraged. Therefore, the LUA interface using tables and strings

19

works quite well. However, imagine that you need to support some weird macro
(or a primitive) that does not expect its argument between curly braces or
brackets. The way out is to precede an argument by another one with the value
false. We call this the direct interface. This is demonstrated in the following
example.

\unexpanded\def\bla#1{[#1]}

\startluacode

context.bla(false, "**xx")

context.par()

context.bla("**x")

\stopluacode

This results in: [*]**

[¥**]. Here, the first call results in three * being passed, and #1 picks up the
first token. The second call to bla gets {**x} passed so here #1 gets the triplet.
In practice you will seldom need the direct interface.

In CONTEXT for historical reasons, combinations accept the following syntax:
\startcombination 7 optional specification, like [2%3]

{\framed{content onel}} {caption one}
{\framed{content two}} {caption two}
\stopcombination
You can also say:
\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content two}} {caption two}
\stopcombination
When coded in LUA, we can feed the first variant as follows:
context.startcombination()
context.direct("one","two")
context.direct("one","two")
context.stopcombination()
To give you an idea what this looks like, we render it:

one one
two two

So, the direct function is basically a no-op and results in nothing by itself.
Only arguments are passed. An equivalent but bit more ugly looking is:
context.startcombination()

context(false,"one","two")
context(false,"one","two")
context.stopcombination()

20

Catcodes

If you are familiar with the inner working of TEX, you will know that characters
can have special meanings. This meaning is determined by their catcodes.
context ("$x=1$")

This gives: x = 1 because the dollar tokens trigger inline math mode. If you
think that this is annoying, you can do the following;:
context.pushcatcodes("text")

context ("$x=1$")

context.popcatcodes ()

Now we get: $x=18. There are several catcode regimes of which only a few make
sense in the perspective of the cld interface.

ctx, ctxcatcodes, context the normal CONTEXT catcode regime
prt, prtcatcodes, protect the CONTEXT protected regime, used for

modules
tex, texcatcodes, plain the traditional (plain) TEX regime
txt, txtcatcodes, text the CONTEXT regime but with less

special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim
xml, xmlcatcodes a regime specially meant for XML processing

In the second case you can still get math:

context.pushcatcodes("text")

context.mathematics("x=1")

context.popcatcodes ()

When entering a lot of math you can also consider this:

context.startimath()

context ("x")

context ("=")

context ("1")

context.stopimath()

Module writers can use unprotect and protect as they do at the TEX end.
As we've seen, a function call to context acts like a print, as in:

context("test ")

context.bold("me")

context (" first")

resulting in: test me first. When more than one argument is given, the first

argument is considered a format conforming the string.format function:

context.startimath()

context ("%s = %0.5f",utf.char(0x03C0) ,math.pi)

context.stopimath()

21

resulting in: ®™ = 3.14159. This means that when you say:
context(a,b,c,d,e,f)

the variables b till £ are passed to the format and when the format does not use
them, they will not end up in your output.

context("%s %s %s",1,2,3)

context(1,2,3)

The first line results in the three numbers being typeset, but in the second case
only the number 1 is typeset.

More on functions

Why we need them

In a previous section we introduced functions as arguments. At first sight this
feature looks strange but you need to keep in mind that a call to a context
function has no direct consequences. It generates TEX code that is executed
after the current LUA chunk ends and control is passed back to TEX. Take the
following code:

context.framed({

frame = "on",

offset = "5mm",

align = "middle"
},

context.input ("knuth")
)
We call the function framed but before the function body is executed, the argu-
ments get evaluated. This means that input gets processed before framed gets
done. As a result there is no second argument to framed and no content gets
passed: an error is reported. This is why we need the indirect call:
context.framed({
frame = "on",
align = "middle"
1,
function() context.input("knuth") end

)

This way we get what we want:

22

Thus, | came to the conclusion that the designer of a new
system must not only be the implementer and first large—scale
user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX
significantly. If | had not participated fully in all these activities, literally
hundreds of improvements would never have been made, because | would

never have thought of them or perceived why they were important.
But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your appli-
cations use such calls a lot, you can of course encapsulate this ugliness:
mycommands = mycommands or { }

function mycommands.framed_input (filename)
context.framed({

frame = "on",
align = "middle"
},
function() context.input(filename) end

end

mycommands . framed_input ("knuth")
Of course you can nest function calls:
context.placefigure(

"caption",
function()
context.framed({
frame = "on",
align = "middle"
},
function() context.input("knuth") end
)
end

)
Or you can use a more indirect method:
function text()
context.framed({
frame = "on",
align = "middle"

23

+s
function() context.input("knuth") end
)

end

context.placefigure(
"none" s
function() text() end
)
You can develop your own style and libraries just like you do with regular LUA
code. Browsing the already written code can give you some ideas.

How we can avoid them

As many nested functions can obscure the code rather quickly, there is an alter-
native. In the following examples we use test:

\def\test#1{[#1]}

context.test("test 1 ",context("test 2a")," test 3")

This gives: test 2aftest 1] test 3. As you can see, the second argument is
executed before the encapsulating call to test. So, we should have packed it
into a function but here is an alternative:

context.test("test 1 ",context.delayed("test 2a")," test 3")

Now we get: [test 1]test 2a test 3. We can also delay functions themselves, look
at this:

context.test("test 1 ",context.delayed.test("test 2b")," test 3")
The result is: [test 1 [[test 2b] test 3. This feature also conveniently permits the
use of temporary variables, as in:

local f = context.delayed.test("test 2c")

context ("before ",f," after")

Of course you can limit the amount of keystrokes even more by creating a short-
cut:

local delayed = context.delayed

context.test("test 1 ",delayed.test("test 2")," test 3")
context.test("test 4 ",delayed.test("test 5")," test 6")

So, if you want you can produce rather readable code and readability of code
is one of the reasons why LUA was chosen in the first place. This is a good
example of why coding in TEX makes sense as it looks more intuitive:
\test{test 1 \test{test 2} test 3}

\test{test 4 \test{test 5} test 6}

24

There is also another mechanism available. In the next example the second
argument is actually a string.
local nested = context.nested

context.test("test 8",nested.test("test 9"),"test 10")

There is a pitfall here: a nested context command needs to be flushed explicitly,
so in the case of:

context.nested.test("test 9")

a string is created but nothing ends up at the TEX end. Flushing is up to you.
Beware: nested only works with the regular CONTEXT catcode regime.

Trial typesetting

Some typesetting mechanisms demand a preroll. For instance, when determining
the most optimal way to analyse and therefore typeset a table, it is necessary to
typeset the content of cells first. Inside CONTEXT there is a state tagged ‘trial
typesetting’ which signals other mechanisms that for instance counters should
not be incremented more than once.

Normally you don’t need to worry about these issues, but when writing the
code that implements the LUA interface to CONTEXT, it definitely had to be
taken into account as we either or not can free cached (nested) functions.

You can influence this caching to some extend. If you say
function()

context ("whatever")
end
the function will be removed from the cache when CONTEXT is not in the trial
typesetting state. You can prevent removal of a function by returning true, as
in:
function()

context ("whatever")

return true
end
Whenever you run into a situation that you don’t get the outcome that you
expect, you can consider returning true. However, keep in mind that it will
take more memory, something that only matters on big runs. You can force
flushing the whole cache by:
context.restart ()
An example of an occasion where you need to keep the function available is in
repeated content, for instance in headers and footers.
context.setupheadertexts {

function()

25

context.pagenumber ()
return true
end

}
Of course it is not needed when you use the following method:
context.pagenumber ("pagenumber")
Because here CONTEXT itself deals with the content driven by the keyword
pagenumber.

Steppers
The context commands are accumulated within a \ctxlua call and only after
the call is finished, control is back at the TEX end. Sometimes you want (in your
LUA code) to go on and pretend that you jump out to TEX for a moment, but
come back to where you left. The stepper mechanism permits this.
A not so practical but nevertheless illustrative example is the following:
\startluacode
context.stepwise (function()
context.startitemize()
context.startitem()
context.step("BEFORE 1")
context.stopitem()
context.step("\\setboxO\\hbox{!!!!13}")
context.startitem()
context.step("/%p",tex.getbox(0) .width)
context.stopitem()
context.startitem()
context.step("BEFORE 2")
context.stopitem()
context.step("\\setbox2\\hbox{?7777}")
context.startitem()
context.step("/%p",tex.getbox(2) .width)
context.startitem()
context.step("BEFORE 3")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2")
context.stopitem()
context.startitem()
context.step("BEFORE 4")
context.startitemize()
context.stepwise (function()

26

context.step("\\bgroup")
context.step("\\setbox0\\hbox{>>>>}")
context.startitem()
context.step("%p",tex.getbox(0) .width)
context.stopitem()
context.step("\\setbox2\\hbox{<<<<}")
context.startitem()
context.step("%p",tex.getbox(2) .width)
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2")
context.stopitem()
context.step("\\egroup")
end)
context.stopitemize()
context.stopitem()
context.startitem()
context.step("AFTER 1\\par")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2\\par")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2\\par")
context.stopitem()
context.startitem()
context.step("AFTER 2\\par")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2\\par")
context.stopitem()
context.startitem()
context.step("\\copyO\\copy2\\par")
context.stopitem()
context.stopitemize ()
end)
\stopluacode

This gives an (ugly) itemize with a nested one:
e BEFORE 1
e 12.76001pt

e BEFORE 2
e 18.88pt
e BEFORE 3
o INN7777
e BEFORE 4
— 31.12pt
— 31.12pt
— >>>>IILKL
— >>>>]ILKL
e AFTER1
o 17777
o IN7777
e AFTER?2
o INN7777
o INN7777

As you can see in the code, the step call accepts multiple arguments, but when
more than one argument is given the first one is treated as a formatter.

A few Details

Variables
Normally it makes most sense to use the English version of CONTEXT. The
advantage is that you can use English keywords, as in:
context.framed({
frame = "on",

28

},
"some text"
)
If you use the Dutch interface it looks like this:
context.omlijnd({
kader = "aan",
},
"wat tekst"
)
A rather neutral way is:
context.framed({
frame = interfaces.variables.on,
1,
"some text"
)
But as said, normally you will use the English user interface so you can forget
about these matters. However, in the CONTEXT core code you will often see
the variables being used this way because there we need to support all user
interfaces.

Modes

CONTEXT carries a concept of modes. You can use modes to create conditional
sections in your style (and/or content). You can control modes in your styles or
you can set them at the command line or in job control files. When a mode test
has to be done at processing time, then you need constructs like the following:

context.doifmodeelse("screen",

function()

. —— mode == screen
end,
function()

. —— mode ~= screen
end

)

However, often a mode does not change during a run, and then we can use the
following method:

if tex.modes["screen"] then
else
end

29

Watch how the modes table lives in the tex namespace. We also have systemmodes.
At the TEX end these are mode names preceded by a *, so the following code is
similar:
if tex.modes["*mymode"] then
-— this is the same
elseif tex.systemmodes["mymode"] then
-- test as this
else
-- but not this
end
Inside CONTEXT we also have so called constants, and again these can be con-
sulted at the LUA end:
if tex.constants["someconstant"] then

else
end

But you will hardly need these and, as they are often not public, their meaning
can change, unless of course they are documented as public.

Token lists

There is normally no need to mess around with nodes and tokens at the Lua
end yourself. However, if you do, then you might want to flush them as well.
Say that at the TEX end we have said:

\toksO = {Don't get \inframed{framed}!'}

Then at the LUA end you can say:

context (tex.toks[0])

and get: Don't get ! In fact, token registers are exposed as strings so
here, register zero has type string and is treated as such.

context ("< Y%s >",tex.toks[0])

This gives: < Don't get ! >. But beware, if you go the reverse way, you
don’t get what you might expect:

tex.toks[0] = [[\framed{oeps}]]

If we now say \the\toks0 we will get \framed{oeps} as all tokens are considered
to be letters.

Node lists

If you're not deep into TEX you will never feel the need to manipulate node lists
yourself, but you might want to flush boxes. As an example we put something
in box zero (one of the scratch boxes).

30

\setbox0 = \hbox{Don't get \inframed{framed}!}

At the TEX end you can flush this box (\box0) or take a copy (\copy0). At the
LuUA end you would do:

context.copy()

context.direct(0)

or:

context.copy(false,0)

but this works as well:

context (node.copy_list(tex.box[0]))

So we get: Don't get ! If you do:

context (tex.box [0])

you also need to make sure that the box is freed but let’s not go into those
details now.

Here is an example of messing around with node lists that get seen before a
paragraph gets broken into lines, i.e. when hyphenation, font manipulation etc.
take place. First we define some colors:

\definecolor [mynesting:0] [r=.6]

\definecolor [mynesting:1] [g=.6]

\definecolor [mynesting:2] [r=.6,g=.6]

Next we define a function that colors nodes in such a way that we can see the
different processing stages.

\startluacode

local enabled = false

local count 0

local setcolor = nodes.tracers.colors.set

function userdata.processmystuff (head)
if enabled then
local color = "mynesting:" .. (count % 3)
—-- for n in node.traverse(head) do
for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)
end
count = count + 1
return head, true
end
return head, false
end

31

function userdata.enablemystuff ()
enabled = true
end

function userdata.disablemystuff ()
enabled = false

end
\stopluacode
We hook this function into the normalizers category of the processor callbacks:
\startluacode
nodes.tasks.appendaction(

"processors",

"normalizers",

"userdata.processmystuff"

)
\stopluacode

We now can enable this mechanism and show an example:
\startbuffer
Node lists are processed \hbox {nested from \hbox{inside} out} which
is not what you might expect. But, \hbox{coloring} does not \hbox
{happen} really nested here, more \hbox {in} \hbox {the} \hbox {order}
\hbox {of} \hbox {processing}.
\stopbuffer

\ctxlua{userdata.enablemystuff ()}

\par \getbuffer \par

\ctxlua{userdata.disablemystuff()}

The \par is needed because otherwise the processing is already disabled before
the paragraph gets seen by TEX. This is the result:

Node lists are processed nested from inside out which is not what you might
expect. But, coloring does not happen really nested here, more in the order of
processing.

Instead of using a boolean to control the state, we can also do this:
\startluacode

local count =0

local setcolor = nodes.tracers.colors.set

function userdata.processmystuff (head)
count = count + 1
local color = "mynesting:" .. (count % 3)

32

for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)
end
return head, true
end

nodes.tasks.appendaction(
"processors",
"after",
"userdata.processmystuff"
)
\stopluacode
Disabling now happens with:
\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode
As you might want to control these things in more details, a simple helper
mechanism was made: markers. The following example code shows the way:
\def inemarker [mymarker]
Again we define some colors:
\definecolor [mymarker:1] [r=.6]
\definecolor [mymarker:2] [g=.6]
\definecolor [mymarker:3] [r=.6,g=.6]
The LUA code looks similar to the code presented before:

\startluacode

local setcolor = nodes.tracers.colors.setlist
local getmarker = nodes.markers.get

local hlist_code = nodes.codes.hlist

local traverse_id = node.traverse_id

function userdata.processmystuff (head)
for n in traverse_id(hlist_code,head) do
local m = getmarker(n,"mymarker")
if m then
setcolor(n.list,"mymarker:" .. m)
end
end
return head, true
end

33

nodes.tasks.appendaction(

"processors",

"after",

"userdata.processmystuff")
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

This time we disabled the processor (if only because in this document we
don’t want the overhead).

\startluacode
nodes.tasks.enableaction("processors", "userdata.processmystuff")
\stopluacode
Node lists are processed \hbox \boxmarker{mymarker}{1}
{nested from \hbox{inside} out}
which is not what you might expect. But,
\hbox {coloring} does not \hbox {happen} really
nested here, more \hbox {in} \hbox \boxmarker{mymarker}{2}
{the} \hbox {order} \hbox {of} \hbox \boxmarker{mymarker}{3}
{processing}.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode
The result looks familiar:

Node lists are processed nested from inside out which is not what you might
expect. But, coloring does not happen really nested here, more in the order of
processing.

Some more examples

Appetizer
Before we give some more examples, we will have a look at the way the title
page is made. This way you get an idea what more is coming.

local todimen, random = number.todimen, math.random

context.startTEXpage ()

local paperwidth = tex.dimen.paperwidth
local paperheight tex.dimen.paperheight
local nofsteps 25

local firstcolor "darkblue"

34

local secondcolor = "white"
context.definelayer({ "titlepage" })

context.setuplayer(
{ "titlepage" },
{ width = todimen(paperwidth),
height = todimen(paperheight),

}

)
context.setlayerframed(

{ "titlepage" },

{ offset = "-5pt" },

{ width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",
backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

1,

nn

)
local settings = {

frame = "off",

background = "color",

backgroundcolor = secondcolor,

foregroundcolor = firstcolor,
foregroundstyle = "type",

3

for i=1, nofsteps do

for j=1, nofsteps do

context.setlayerframed(

{ "titlepage" 1},

{ x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = random(360),

3,

settings,

"CLD"

end
end

35

context.tightlayer({ "titlepage" 1})

context.stopTEXpage ()

return true

This does not look that bad, does it? Of course in pure TEX code it looks mostly
the same but loops and calculations feel a bit more natural in LUA then in TEX.
The result is shown in figure 1. The actual cover page of the manual was derived
from this.

H B QSR BEESE

1= key
MoV @E@mmgaonmsa%@w~
M B2aeHE T H B¢

WWEWE a8 mgﬁ /
H 6= TEAE HH Gl R QYHSIEBE
5T XOH SIS SBBH QHOE
S0 STV QYVRGBHAZGHOBE
§§O6VT B GSE SRV DR GRA
R0SHEIBE LB BIVRHOE 99O

TR QUSTH SO TEGH GOGH A Oh

GFSH B8 SVEBHOSOCOBIOD
628 SBH 9YORH 51 DHBIATS
5 OBBECOTOTHOORGESE IV ©
88 GRS QHBSTOOR GG OB

Qe .
B ¢2H98 Ol ©0OOH BE 9 HOsEER
SEOSE SR SH HER QRGUBEE QO ST

Figure 1 The simplified cover page.

A few examples
As it makes most sense to use the LUA interface for generated text, here is
another example with a loop:
context.startitemize { "a", "packed", "two" }
for i=1,10 do
context.startitem()
context("this is item %i",i)
context.stopitem()
end
context.stopitemize()

36

resulting in:

this is item 1
this is item 2
this is item 3
this is item 4
this is item 5
this is item 6
this is item 7
this is item 8
this is item 9
this is item 10

TSR TSho OO0 Tw

Just as you can mix TEX with XML and METAPOST, you can define bits
and pieces of a document in LUA. Tables are good candidates:
local one = {
align = "middle",
style "type",

}
local two = {
align = "middle",

style = "type",

background = "color",
backgroundcolor = "darkblue",
foregroundcolor = "white",

}
local random = math.random
context.bTABLE { framecolor = "darkblue" }
for i=1,10 do
context.bTR()
for i=1,20 do
local r = random(99)
context.bTD(r < 50 and one or two)
context ("%2i",r)
context.eTD()
end
context.eTR()
end
context.eTABLE()
Here we see a function call to context in the most indented line. The first
argument is a format that makes sure that we get two digits and the random
number is substituted into this format. The result is shown in table 1. The

37

pT] 05 59 94 kg 52 B 66 95 RN 90 B 77 62 [77 50 68

11]17 EITA 7 [o |45 |33 et 25| 4

£y 80 78 9276 By 9 [28 9684 87 9371 76

84 8065 79 7098 12 7592 33 82 8791
Table 1 A table generated by LUA.

line correction is ignored when we use this table as a float, otherwise it assures
proper vertical spacing around the table. Watch how we define the tables one
and two beforehand. This saves 198 redundant table constructions.
Not all code will look as simple as this. Consider the following:
context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end
)
Here we pass an argument wrapped in a function. If we would not do that,
the external figure would end up wrong, as arguments to functions are evalu-
ated before the function that gets them (we already showed some alternative
approaches in previous chapters). A function argument is treated as special and
in this case the external figure ends up right. Here is another example:
context.placefigure("Two cows!",function()
context.bTABLE(Q)
context.bTR()
context.bTD()
context.externalfigure(
{ "cow.pdf" },
{ width = "3cm", height = "3cm" }
)
context.eTD()
context.bTD { align = "{lohi,middle}" }
context ("and")
context.eTD()
context.bTD()
context.externalfigure(

38

{ "cow.pdf" },
{ width = "4cm", height = "3cm" }
)
context.eTD()
context.eTR()
context.eTABLE()
end)
In this case the figure is not an argument so it gets flushed sequentially with the
rest:

and

Figure 2 Two cows!

Styles

Say that you want to typeset a word in a bold font. You can do that this way:
context("This is ")

context.bold("important")

context ("!")

Now imagine that you want this important word to be in red too. As we have
a nested command, we end up with a nested call:

context("This is ")

context.bold(function() context.color({ "red" }, "important") end)
context("!")

or

context("This is ")

context.bold(context.delayed.color({ "red" }, "important"))
context("!")

In that case it’s good to know that there is a command that combines both
features:

context("This is ")

context.style({ style = "bold", color = "red" }, "important")
context ("!")

But that is still not convenient when we have to do that often. So, you can wrap
the style switch in a function.

39

local function mycommands.important(str)
context.style({ style = "bold", color = "red" }, str)
end
context("This is ")
mycommands . important ("important")
context(", and ")
mycommands . important ("this")
context (" too !")
Or you can setup a named style:
context.setupstyle({ "important" },
{ style = "bold", color = "red" })
context ("This is ")
context.style({ "important" }, "important")
context(", and ")
context.style({ "important" }, "this")
context (" too !")
Or even define one:
context.definestyle({ "important" },
{ style = "bold", color = "red" })
context ("This is ")
context.important ("important")
context(", and ")
context.important ("this")
context (" too !")
This last solution is especially handy for more complex cases:
context.definestyle({ "important" 1},
{ style = "bold", color = "red" })
context ("This is ")
context.startimportant ()
context.inframed("important")
context.stopimportant ()
context(", and ")
context.important ("this")
context (" too ")

resulting in: This is , and this too !

A complete example

One day my 6 year old niece Lorien was at the office and wanted to know what
I was doing. As I knew she was practicing arithmetic at school I wrote a quick
and dirty script to generate sheets with exercises. The most impressive part was

40

that the answers were included. It was a rather braindead bit of LUA, written
in a few minutes, but the weeks after I ended up running it a few more times,
for her and her friends, every time a bit more difficult and also using different
arithmetic. It was that script that made me decide to extend the basic cld
manual into this more extensive document.

We generate three columns of exercises. Each exercise is a row in a table.
The last argument to the function determines if answers are shown.
local random = math.random

local function ForLorien(n,maxa,maxb,answers)
context.startcolumns { n = 3 }
context.starttabulate { "Irlclrlclr|" }
for i=1,n do
local sign = random(0,1) > 0.5
local a, b = random(1l,maxa or 99), random(l,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context (a)
context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context (b)
context.NC()
context ("=")
context.NC()
context (answers and (sign and a+b or a-b))
context.NC()
context.NR()
end
context.stoptabulate()
context.stopcolumns ()
context.page()
end

This is a typical example of where it’s more convenient to write the code in
Lua that in TEX’s macro language. As a consequence setting up the page also
happens in LUA:
context.setupbodyfont {

"palatino",

"14pt"
}

41

context.setuplayout {

backspace = "2cm",
topspace = "2cm",
header = "1icm",
footer = "Ocm",
height = "middle",
width = "middle",

}

This leaves us to generate the document. There is a pitfall here: we need to use
the same random number for the exercises and the answers, so we freeze and
defrost it. Functions in the commands namespace implement functionality that
is used at the TEX end but better can be done in LUA than in TEX macro code.
Of course these functions can also be used at the LUA end.

context.starttext ()
local n = 120
commands .freezerandomseed ()

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands .defrostrandomseed ()

ForLorien(n,10,10,true)
ForLorien(n,20,20,true)
ForLorien(n,30,30,true)
ForLorien(n,40,40,true)
ForLorien(n,50,50,true)

context.stoptext ()
A few pages of the result are shown in figure 3. In the CONTEXT distribution

a more advanced version can be found in s-edu-01.c1d as I was also asked to
generate multiplication and table exercises. In the process I had to make sure
that there were no duplicates on a page as she complained that was not good.
There a set of sheets is generated with:
moduledata.educational.arithematic.generate {

name = "Bram Otten",

fontsize = "12pt",

42

oMM MR O TN SO S~ O NN OO N®O DN =N

R T Fo NN SN~ InG o

o

[

I e B R e L I S A AN A N B A A R R AN B

BB SO AN HIN B HN S DI MIINRNCA TSN ON®BOR O R D DN

S N T R N N N R

O SN IN N MM 00 MO DN BN BN 0N SN D OO NI O

ok

L T R R B R

[B A A A

© % I ID W G N B NG D B H D W B 0 B 010 I 16 5 310 0 Ih S I R — 0 I0 D

NI NN ME OO T H N0 HB DI F GO O A==

R N R R N e b R T NN TR
T I B B A B B B i B B B e B B R N A

0 + 2

4 QNG O AN S AN E RO F I MINNSIDDIDSNONBINRD SN

R N o R R N R N

T B B e e e I S B B B B I B B A I B B B B S B RO

5 + 10

FO DD AD N FDDHENGODODINN ORGSO ®BORNRC R D BN

N L R L R R R N R RN I N

B e I B B R B B B R AN R

[B R A

© BN F AN BN DI NN F G FE T F A DD NI OGN O NN R D= ® D

WU
R N R R L R R N N TR

[L e o o B B B B B B B B B B B B B B R

QA CF IR O AN D FAD O F—MIDNSBRIDGNONDBIRNSON O

exercises

answers

Figure 3 Lorien’s challenge.

[e

columns

run

8, maxb = 8 },
16 },

16, maxb =
32, maxb =

maxa

>

"bin_add and_subtract"

"bin_add_and_subtract"

{ method
{ method
{ method

maxa

>

"bin_add and_subtract"

maxa

32 1,

>

maxa

64 1,

128, maxb = 128 },

64, maxb =

>

{ method = "bin_add_and_subtract"

"bin_add and_subtract"

maxa =

>

{ method

Interfacing

The fact that we can define functionality using LUA code does not mean that

we should abandon the TEX interface. As an example of this we use a relatively

simple module for typesetting morse code.? First we create a proper namespace:

moduledata.morse or { }

= moduledata.morse

moduledata.morse
local morse

3The real module is a bit larger and can format verbose morse.

43

We will use a few helpers and create shortcuts for them. The first helper loops
over each UTF character in a string. The other two helpers map a character
onto an uppercase (because morse only deals with uppercase) or onto an similar
shaped character (because morse only has a limited character set).

local utfcharacters = string.utfcharacters

local ucchars, shchars = characters.ucchars, characters.shchars
The morse codes are stored in a table.

local codes = {

["a"] = "=, ['B"] = "=--n,
[IICIl] = Il_._,ll, [IIDH] = N II’
["E"] = u,u’ ["F"] = n - n,
["G"] = "—m-n, [MHY] = el
['1"] = ", [""] = ",
["K"] = "=ty ML) o= e-sen,
['Mn] = ne-r, ["N"] = e,
["0"] = "===", ["P"] = .-,
["Q"] = "===", ['R"] = te-ev,
[nsu] = n, n, ["T"] = n u’
["U"] =N _u, [nvu] = n ,_u,
["W'] = me—-t, o [UKM] = et
["¥"] = Moot (M2 = el
["0"] = "---m-t, [M17] = Meo—--n,
["2"] = "ot [M3M] = v,
["4"] = "eooon, [UEM] = neeelln
["6"] = "—eoet, [M7M] = Mo,
["8"] = W___ n’ [ngn] = M. n,
[n‘u] = N._._. _u’ [n’u] = u__,,__u’
[":"] = Mo, [M50] = et
["7"] = teemmeen, [M1] = oo
["="] = "—eeeeon /] = M
["("] = Moo, [N = Moo
["="] = "—-eoot, [M@"] = Meo-e-s
[ulu] = ll.____.u’ [luv] = N._..-. u,
[nAu] = u,__,_n’ [nAn] = N.__ _n,
[nAu] = u._,_u’ ["IE"] = n _._u,
['G"] = "—men, [MEM] = vl
R I L
["6"] = "e—m-v, [= te--en,
["g"] = vee--n, o [hgt] = S

44

morse.codes = codes
As you can see, there are a few non ASCII characters supported as well. There
will never be full UNICODE support simply because morse is sort of obsolete.
Also, in order to support UNICODE one could as well use the bits of UTF char-
acters, although ... memorizing the whole UNICODE table is not much fun.
We associate a metatable index function with this mapping. That way we
can not only conveniently deal with the casing, but also provide a fallback based
on the shape. Once found, we store the representation so that only one lookup
is needed per character.
local function resolvemorse(t,k)
if k then
local u = ucchars[k]
local v = rawget(t,u) or rawget(t,shchars[u]) or false
tlk] = v
return v
else
return false
end
end

setmetatable(codes, { __index = resolvemorse })
Next comes some rendering code. As we can best do rendering at the TEX end
we just use macros.

local MorseBetweenWords = context.MorseBetweenWords
local MorseBetweenCharacters = context.MorseBetweenCharacters
local Morselong = context.Morselong

local MorseShort = context.MorseShort

local MorseSpace = context.MorseSpace

local MorseUnknown = context.MorseUnknown

The main function is not that complex. We need to keep track of spaces and
newlines. We have a nested loop because a fallback to shape can result in
multiple characters.
function morse.tomorse(str)
local inmorse = false
for s in utfcharacters(str) do
local m = codes[s]
if m then
if inmorse then
MorseBetweenWords ()
else
inmorse = true

45

end
local done = false
for m in utfcharacters(m) do
if done then
MorseBetweenCharacters ()
else
done = true

end
if m == "-" then
MorseShort ()
elseif m == "-" then
MorseLong()
elseif m == " " then
MorseBetweenCharacters()
end
end
inmorse = true
elseif s == "\n" or s == " " then

MorseSpace ()
inmorse = false
else
if inmorse then
MorseBetweenWords ()
else
inmorse = true
end
MorseUnknown (s)
end
end
end
We use this function in two additional functions. One typesets a file, the other
a table of available codes.
function morse.filetomorse(name,verbose)
morse.tomorse(resolvers.loadtexfile(name) ,verbose)
end

function morse.showtable()
context.starttabulate { "[1]1]" }
for k, v in table.sortedpairs(codes) do
context.NC() context (k)
context.NC() morse.tomorse(v,true)

46

context.NC() context.NR()
end
context.stoptabulate()
end
We’re done with the LUA code that we can either put in an external file or put
in the module file. The TEX file has two parts. The typesetting macros that we
use at the LUA end are defined first. These can be overloaded.
\def\MorseShort
{\dontleavehmode
\vrule
width \MorseWidth
height \MorseHeight
depth \zeropoint
\relax}

\def\MorseLong
{\dontleavehmode
\vrule
width 3\dimexpr\MorseWidth
height \MorseHeight
depth \zeropoint
\relax}

\def\MorseBetweenCharacters
{\kern\MorseWidth}

\def\MorseBetweenWords
{\hskip3\dimexpr\MorseWidth\relax}

\def\MorseSpace
{\hskip7\dimexpr\MorseWidth\relax}

\def\MorseUnknown#1

{[\detokenize{#1}1}
The dimensions are stored in macros as well. Of course we could provide a
proper setup command, but it hardly makes sense.
\def\MorseWidth {0.4em}
\def\MorseHeight{0.2em}
Finally we have arrived at the macros that interface to the LUA functions.
\def\MorseString#1{\ctxlua{moduledata.morse.tomorse(\! !bs#1\!!es)}}
\def\MorseFile #1{\ctxlua{moduledata.morse.filetomorse("#1")}}

47

\def\MorseTable {\ctxlua{moduledata.morse.showtable()}}

A string is converted to morse with the first command.

\Morse{A more advanced solution would be to convert a node list. That
way we can deal with weird input.}

This shows up as:

Reduction and uppercasing is demonstrated in the next example:
\MorseString{AAARKRa55554}
This gives:

Using helpers
The next example shows a bit of LPEG. On top of the standard functionality a
few additional functions are provided. Let’s start with a pure TEX example:
\defineframed

[colored]

[foregroundcolor=red,

foregroundstyle=\underbar,

offset=.1ex,

location=1low]
\processisolatedwords {\input ward \relax} \colored

that results in: [The] [Earth \ . E [habltat\ for| [animall | ’@
3] [fatal| fillness.| [Several] in| [fact. [It[would] [be| |happening] | whether humans h
ever {evolved{p{noﬂ [But lour] [presence Hls I|ke the] |effect] of] [an[[old|-|a [LLtlen

who {smokes} lmany} lpacks} ay] E @ humans @ g
cigarettes.
Because this processor macro operates at the TEX end it has some limitations.

The content is collected in a very narrow box and from that a regular paragraph

48

is constructed. It is for this reason that no color is applied: the snippets that

end up in the box are already typeset.

An alternative is to delegate the task to LUA:
\startluacode
local function process(data)

local words = lpeg.split(lpeg.patterns.spacer,data or "")

for i=1,#words do
if i == 1 then
context.dontleavehmode ()
else
context.space()
end
context.colored(words[i])
end

end

process(io.loaddata(resolvers.findfile("ward.tex")))
\stopluacode

This results in: \M\ [Earth] as| ‘habitat‘

Ifor lanimal|[life | [is] [in] [old] [age] [and has|[3]

[presence{hsllke the| [effect]

fatall fillness | [Several,[fi;nllfact It |would[[be Thappening whether| [humans] [had] [ever
our]

Joﬂ[%g lold-age [patient] [who

smokesHmanpracks oWgarettes[humans @ thel|cigarettes.

The function Sphts the loaded data into a table with individual words. We

use a splitter that splits on spacing tokens. The special case for i =

1 makes

sure that we end up in horizontal mode (read: properly start a paragraph)
This time we do get color because the typesetting is done directly. Here is an

alternative implementation:
local done = false

local function reset()
done = false
return true
end
local function apply(s)
if done then
context.space()
else
done = true
context.dontleavehmode ()

49

end
context.colored(s)
end

local splitter = lpeg.P(reset)
* lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
lpeg.match(splitter,data)
end
This version is more efficient as it does not create an intermediate table. The
next one is comparable:
local function apply(s)
context.colored("%s ",s)
end

local splitter lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
context.dontleavevmode ()
lpeg.match(splitter,data)
context.removeunwantedspaces ()
end

Formatters

Sometimes you can save a bit of work by using formatters. By default, the

context command, when called directly, applies a given formatter. But when

called as table this feature is lost because then we want to process non-strings

as well. The next example shows a way out:

context("the current emwidth is %p", \number\emwidth)

context.par()

context.formatted("the current emwidth is %p", \number\emwidth)

context.par()

context.bold(string.formatters["the current emwidth is %p"](
\number\emwidth))

context.par ()

context.formatted.bold("the current emwidth is %p",
\number\emwidth)

The last one is the most interesting one here: in the subnamespace formatted

(watch the d) a format specification with extra arguments is expected. This is

the result: the current emwidth is 10pt

50

the current emwidth is 10pt
the current emwidth is 10pt
the current emwidth is 10pt.

Summary

context("...")
The string is flushed directly.

context("format",...)
The first string is a format specification according that is passed to the Lua
function format in the string namespace. Following arguments are passed too.
format ("format",...)

context(123,...)

The numbers (and following numbers or strings) are flushed without any for-
matting.

123... (concatenated)

context(true)
An explicit endlinechar is inserted.
M

context(false,...)

Strings and numbers are flushed surrounded by curly braces, an indexed table
is flushed as option list, and a hashed table is flushed as parameter set.
multiple {...} or [...] etc

context(node)
The node(list) is injected at the spot. Keep in mind that you need to do the
proper memory management yourself.

context.command (value,...)
The value (string or number) is flushed as a curly braced (regular) argument.

o1

\command {value}...

context.command(value ,...)
The table is flushed as value set. This can be an identifier, a list of options, or
a directive.

\command [value]...

context.command(key = value ,...)
The table is flushed as key/value set.
\command [key={valuel}]...

context.command (true)
An explicit endlinechar is inserted.
\command ~~M

context.command (node)

The node(list) is injected at the spot. Keep in mind that you need to do the
proper memory management yourself.

\command {node(list)}

context.command (false,value)
The value is flushed without encapsulating tokens.
\command value

context.command(value , key = value , value, false, value)
The arguments are flushed accordingly their nature and the order can be any.
\command [value] [key={valuel}]{value}value

context.direct(...)
The arguments are interpreted the same as if direct was a command, but no
\direct is injected in front.

context.delayed(...)
The arguments are interpreted the same as in a context call, but instead of a
direct flush, the arguments will be flushed in a next cycle.

52

context.delayed.command(...)
The arguments are interpreted the same as in a command call, but instead of a
direct flush, the command and arguments will be flushed in a next cycle.

context.nested.command
This command returns the command, including given arguments as a string. No
flushing takes place.

context.nested
This command returns the arguments as a string and treats them the same as
a regular context call.

context.formatted.command

This command returns the command that will pass it’s arguments to the string
formatter.

context.formatted
This command passes it’s arguments to the string formatter.

context.metafun.start(...)
This starts a METAFUN (or METAPOST) graphic.

context.metafun()
This finishes and flushes a METAFUN (or METAPOST) graphic.

context.metafun.stop(...)
The argument is appended to the current graphic data.

context.metafun.stop("format",...)
The argument is appended to the current graphic data but the string formatter
is used on following arguments.

53

ConTEXt—Lua dokumenty

V ramci formatu CONTEXT lze pfipravovat dokumenty pomoci kombinace ja-
zyktt TEX, XML, METAPOST a LUA. Clanek v kratkosti shrnuje zaklady jazyka
LUA a nasledné se vénuje zpusobum, jakymi je mozné jazyk vyuzit pri pripravée
dokumenti ve formatu CoNTEXT MKIV.

Klicova slova: Lua, LUATEX, CONTEXT, MKIV

Hans Hagen, pragma@uzxs.nl

o4

Exporting XML and ePub from Con t

1 HANs HAGEN I

The article describes the XML backend of CONTEXT, which can be used to
produce structured XML documents out of a TEX input. One of the many
applications of the XML backend is the conversion to ePub e-book format, which
the article covers in detail.

Keywords: CONTEXT, XML, ePub

Introduction

There is a pretty long tradition of typesetting math with TEX and it looks like
this program will dominate for many more years. Even if we move to the web,
the simple fact that support for MathML in some browsers is suboptimal will
drive those who want a quality document to use PDF instead.

I'm writing this in 2014, at a time when XML is widespread. The idea of XML
is that you code your data in a very structured way, so that it can be manipulated
and (if needed) validated. Text has always been a target for XML which is a
follow-up to SGML that was in use by publishers. Because HTML is less structured
(and also quite tolerant with respect to end tags) we prefer to use XHTML but
unfortunately support for that is less widespread.

Interestingly, documents are probably among the more complex targets of
the XML format. The reason is that unless the author restricts him/herself or
gets restricted by the publisher, tag abuse can happen. At Pragma ADE we
mostly deal with education-related XML and it’s not always easy to come up
with something that suits the specific needs of the educational concept behind a
school method. Even if we start out nice and clean, eventually we end up with a
polluted source, often with additional structure needed to satisfy the tools used
for conversion.

We have been supporting XML from the day it showed up and most of our
projects involve XML in one way or the other. That doesn’t mean that we
don’t use TEX for coding documents. This manual is for instance a regular TEX
document. In many ways a structured TEX document is much more convenient
to edit, especially if one wants to add a personal touch and do some local page
make-up. On the other hand, diverting from standard structure commands makes
the document less suitable for output other than PDF. There is simply no final
solution for coding a document, it’s mostly a matter of taste.

por: 10.5300/2017-1-2/55 95

So we have a dilemma: if we want to have multiple output, frozen PDF as well
as less-controlled HTML output, we can best code in XML, but when we want to
code comfortably we’d like to use TEX. There are other ways, like Markdown,
that can be converted to intermediate formats like TEX, but that is only suitable
for simple documents: the more advanced documents get, the more one has to
escape from the boundaries of (any) document encoding, and then often TEX is
not a bad choice. There is a good reason why TEX survived for so long.

It is for this reason that in CONTEXT MKIV we can export the content in a
reasonable structured way to XML. Of course we assume a structured document.
It started out as an experiment because it was relatively easy to implement, and
it is now an integral component.

The output

The regular output is an XML file but as we have some more related data it gets
organized in a tree. We also export a few variants. An example is given below:

./test-export

./test-export/images
./test-export/images/. ..
./test-export/styles
./test-export/styles/test-defaults.css
./test-export/styles/test-images.css
./test-export/styles/test-styles.css
./test-export/styles/test-templates.css
./test-export/test-raw.xml
./test-export/test-raw.lua
./test-export/test-tag.xhtml
./test-export/test-div.xhtml

Say that we have this input:

\setupbackend
[export=yes]

\starttext
\startsection[title=First]
\startitemize
\startitem one \stopitem
\startitem two \stopitem
\stopitemize
\stopsection
\stoptext

o6

The main export ends up in the test-raw.xml export file and looks like the
following (we leave out the preamble and style references):

<document> <!-- with some attributes -->
<section detail="section" chain="section" level="3">
<sectionnumber>1</sectionnumber>
<sectiontitle>First</sectiontitle>
<sectioncontent>
<itemgroup detail="itemize"
chain="itemize" symbol="1" level="1">
<item>
<itemtag><m:math ..><m:mo>e</m:mo></m:math></itemtag>
<itemcontent>one</itemcontent>
</item>
<item>
<itemtag><m:math ..><m:mo>e</m:mo></m:math></itemtag>
<itemcontent>two</itemcontent>
</item>
</itemgroup>
</sectioncontent>
</section>
</document>

This file refers to the stylesheets and therefore renders quite well in a browser
like Firefox that can handle XHTML with arbitrary tags.

The detail attribute tells us what instance of the element is used. Normally
the chain attribute is the same but it can have more values. For instance, if we
have:

\definefloat [graphic] [graphics] [figure]

\startplacefigure[title=First]
\externalfigure [cow.pdf]
\stopplacefigure

\startplacegraphic[title=Second]
\externalfigure[cow.pdf]
\stopplacegraphic

we get this:
<float detail="figure" chain="figure">

o7

<floatcontent>...</floatcontent>
<floatcaption>...</floatcaption>

</float>

<float detail="graphic" chain="figure graphic">
<floatcontent>...</floatcontent>
<floatcaption>...</floatcaption>

</float>

This makes it possible to style specific categories of floats by using a (combi-
nation of) detail and/or chain as filters.

The body of the test-tag.xhtml file looks similar but it is slightly more
tuned for viewing. For instance, hyperlinks are converted to a way that ¢SS and
browsers like more. Keep in mind that the raw file can be the base for conversion
to other formats, so that one stays closest to the original structure.

The test-div.xhtml file is even more tuned for viewing in browsers as it
completely does away with specific tags. We explicitly don’t map onto native
HTML elements because that would make everything look messy and horrible, if
only because there seldom is a relation between those elements and the original.
One can always transform one of the export formats to pure HTML tags if needed.

<body>
<div class="document">
<div class="section" id="aut-1">

<div class="sectionnumber">1</div>

<div class="sectiontitle">First</div>

<div class="sectioncontent">

<div class="itemgroup itemize symbol-1">
<div class="item">
<div class="itemtag"><m:math ...>
<m:mo>e</m:mo></m:math></div>

<div class="itemcontent">one</div>

</div>
<div class="item">
<div class="itemtag"><m:math ...>

<m:mo>e</m:mo></m:math></div>
<div class="itemcontent">two</div>
</div>
</div>
<div class="float figure">
<div class="floatcontent">...</div></div>
<div class="floatcaption">...></div>
</div>
<div class="float figure graphic">

o8

<div class="floatcontent">...</div></div>
<div class="floatcaption">...></div>
</div>
</div>
</div>
</body>

The default css file can deal with tags as well as classes. The file of additional
styles contains definitions of so-called highlights. In the CONTEXT source one is
better off using explicit named highlights instead of local font and color switches
because these properties are then exported to the ¢ss. The images style defines
all images used. The templates file lists all the elements used and can be used as
a starting point for additional CSS styling.

Keep in mind that the export is not meant as a one-to-one visual repre-
sentation. It represents structure so that it can be converted to whatever you
like.

In order to get an export you must start your document with:

\setupbackend

[export=yes]

So, we trigger a specific (extra) backend. In addition you can set up the
export:

\setupexport

[svgstyle=test-basic-style.tex,

cssfile=test-extras.css,

hyphen=yes,

width=60em]

The hyphen option will also export hyphenation information so that the text
can be nicely justified. The svgstyle option can be used to specify a file where
math is set up; normally this would only contain a bodyfont setup, and this
option is only needed if you want to create an ePub file afterwards which has
math represented as SVG.

The value of cssfile ends up as a style reference in the exported files. You
can also pass a comma-separated list of names (between curly braces). These
entries come after those of the automatically generated Css files so you need to
be aware of default properties.

Images
Inclusion of images is done in an indirect way. Each image gets an entry in a

special image related stylesheet and then gets referred to by id. Some extra
information is written to a status file so that the script that creates ePub files

99

can deal with the right conversion, for instance from PDF to SVG. Because we can
refer to specific pages in a PDF file, this subsystem deals with that too. Images
are expected to be in an images subdirectory and because in CSS the references
are relative to the path where the stylesheet resides, we use ../images instead.
If you do some postprocessing on the files or relocate them you need to keep in
mind that you might have to change these paths in the image-related css file.

Epub files

At the end of a run with exporting enabled you will get a message to the console
that tells you how to generate an ePub file. For instance:
mtxrun --script epub --make --purge test

This will create a tree with the following organization:
./test-epub
./test-epub/META-INF
./test-epub/META-INF/container.xml
./test-epub/0EBPS
./test-epub/0EBPS/content . opf
./test-epub/0EBPS/toc.ncx
./test-epub/0EBPS/nav.xhtml
./test-epub/0EBPS/cover.xhtml
./test-epub/0EBPS/test-div.xhtml
./test-epub/0EBPS/images
./test-epub/0OEBPS/images/. ..

./test-epub/styles
./test-epub/styles/test-defaults.css
./test-epub/styles/test-images.css
./test-epub/styles/test-styles.css
./test-epub/mimetype

Images will be moved to this tree as well and if needed they will be converted,
for instance into svG. Converted PDF files can have a page-<number> in their
name when a specific page has been used.

You can pass the option --svgmath in which case math will be converted to
SvG. The main reason for this feature is that we found out that MathML support
in browsers is not currently as widespread as might be expected. The best bet is
Firefox which natively supports it. The Chrome browser had it for a while but it
got dropped and math is now delegated to JavaScript and friends. In Internet
Explorer MathML should work (but I need to test that again).

This conversion mechanism is kind of interesting: one enters TEX math, then
gets MathML in the export, and that gets rendered by TEX again, but now as a
standalone snippet that then gets converted to SVG and embedded in the result.

60

Styles

One can argue that we should use native HTML elements but since we don’t
have a nice guaranteed-consistent mapping onto that, it makes no sense to do
so. Instead, we rely on either explicit tags with details and chains or divisions
with classes that combine the tag, detail and chain. The tagged variant has some
more attributes and those that use a fixed set of values become classes in the
division variant. Also, once we start going the (for instance) H1, H2, etc. route
we’re lost when we have more levels than that or use a different structure. If an
H3 can reflect several levels it makes no sense to use it. The same is true for other
tags: if a list is not really a list than tagging it with LI is counterproductive.
We’re often dealing with very complex documents so basic HTML tagging becomes
rather meaningless.

If you look at the division variant (this is used for ePub too) you will notice
that there are no empty elements but div blocks with a comment as content.
This is needed because otherwise they get ignored, which for instance makes table
cells invisible.

The relation between detail and chain (reflected in class) can best be seen
from the next example.

\definefloat [myfloatal]
\definefloat [myfloatb] [myfloatbs] [figure]
\definefloat [myfloatc] [myfloatcs] [myfloatb]

This creates two new float instances. The first inherits from the main float
settings, but can have its own properties. The second example inherits from the
figure so in fact it is part of a chain. The third one has a longer chain.
<float detail="myfloata">...</float>
<float detail="myfloatb" chain="figure">...</float>
<float detail="myfloatc" chain="figure myfloatb">...</float>

In a ¢SS style you can now configure tags, details, and chains as well as classes
(we show only a few possibilities). Here, the Css element on the first line of each
pair is invoked by the CSs selector on the second line.

div.float.myfloata { } float[detail=’myfloata’] { }
div.float.myfloatb { } float [detail="myfloatb’] { }
div.float.figure { } float[detail="figure’] { }

div.float.figure.myfloatb { } float[chain~="figure’]
[detail="myfloata’] { }

div.myfloata { } *x[detail="myfloata’] { }
div.myfloatb { } x[detail="myfloatb’] { }
div.figure { } *[chain~=’figure’] { }
div.figure.myfloatb { } *[chain~=’figure’]

[detail="myfloatb’] { }

61

The default styles cover some basics but if you're serious about the export
or want to use ePub then it makes sense to overload some of it and/or provide
additional styling. You can find plenty about ¢SS and its options on the Internet.

Coding

The default output reflects the structure present in the document. If that is not
enough you can add your own structure, as in:

\startelement [question]
Is this right?
\stopelement

You can also pass attributes:

\startelement [question] [level=difficult]
Is this right?
\stopelement

But these will be exported only when you also say:

\setupexport
[properties=yes]

You can create a namespace. The following will generate attributes like
my-level.

\setupexport
[properties=my-]

In most cases it makes more sense to use highlights:

\definehighlight
[important]
[style=bold]

This has the advantage that the style and color are exported to a special Css
file.

Headers, footers, and other content that is part of the page builder are not
exported. If your document has cover pages you might want to hide them too.
The same is true when you create special chapter title rendering with a side effect
that content ends up in the page stream. If something shows up that you don’t
want, you can wrap it in an ignore element:

\startelement [ignore]
Don’t export this.
\stopelement

62

Acknowledgement

The above article is available through the CONTEXT distribution. It can be
found in /texmf-context/doc/context/sources/general/manuals/epub.
We would like to thank Karl Berry for proofreading and corrections.

Export dokumentt ve formatu ConTEXt do XML a ePub

Clanek popisuje vystupni modul pro CONTEXT, ktery slouzi pro generovani
strukturovanych XML dokumentt z TEXového vstupu. Jednou z aplikaci tohoto
modulu, které se ¢lanek vénuje bliZe, je export do formatu ePub vyuzivaného
¢teckami elektronickych knih.

Klicova slova: CONTEXT, XML, ePub

Hans Hagen, pragma@uzxs.nl

63

Oriental TEX: Optimizing Paragraphs

HaNS HAGEN, IDRIS SAMAWI HAMIDI

The article describes the state of the art in paragraph optimization for Arabic as
implemented in CONTEXT. The implementation is introduced using Latin script
examples. The article proceeds to describe the main features of Arabic script
and known approaches towards paragraph optimization. One of the described
approaches is then implemented and used to typeset a passage from the Qur’an.

Keywords: microtypography, OPENTYPE, CONTEXT, LUATEX

Introduction

One of the objectives of the Oriental TEX project has always been to play with
paragraph optimization. The original assumption was that we needed an advanced
non-standard paragraph builder to Arabic done right but in the end we found
out that a more straightforward approach is to use a sophisticated OPENTYPE
font in combination with a paragraph postprocessor that uses the advanced
font capabilities. This solution is somewhat easier to imagine than a complex
paragraph builder but still involves quite some juggling.

At the June 2012 meeting of the NTG there was a talk about typesetting
Devanagari and as fonts are always a nice topic (if only because there is something
to show) it made sense to tell a bit more about optimizing Arabic at the same
time. In fact, that presentation was already a few years too late because a couple
of years back, when the oriental TEX project was presented at TUG and Dante
meetings, the optimizer was already part of the CONTEXT core code. The main
reason for not advocating is was the simple fact that no font other than the (not
yet finished) Husayni font provided the relevant feature set.

The lack of advanced fonts does not prevent us from showing what we're
dealing with. This is because the CONTEXT mechanisms are generic in the sense
that they can also be used with regular Latin fonts, although it does not make
that much sense. Anyhow, in the next section we wrap up the current state of
typesetting Arabic in CONTEXT. We focus on the rendering, and leave general
aspects of bidirectional typesetting and layouts for another time.

This article is written by Idris Samawi Hamid and Hans Hagen and is typeset
by CONTEXT MKIV which uses LUATEX. This program is an extension of TEX
that uses LUA to open up the core machinery. The LUATEX core team consists
of Taco Hoekwater, Hartmut Henkel and Hans Hagen.

64 por: 10.5300/2017-1-2/64

Manipulating glyphs

When discussing optical optimization of a paragraph, a few alternatives come to
mind:

e One can get rid of extensive spaces by adding additional kerns between
glyphs. This is often used by poor man’s typesetting programs (or routines)
and can be applied to non-connecting scripts. It just looks bad. Of course,
for connected scripts like Arabic, inter-glyph kerning is not an option, not
even in principle.

e Glyphs can be widened a few percent and this is an option that LUATEX
inherits from its predecessor pdfTEX. Normally this goes unnoticed al-
though excessive scaling makes things worse, and yes, one can run into such
examples. This strategy goes under the name hz-optimization (the hz refers
to Hermann Zapf, who first came up with this solution).!

e A real nice solution is to replace glyphs by narrower or wider variants. This
is in fact the ideal hz solution — including Arabic script as well — but for
it to happen one not only needs fonts with alternative shapes, but also a
machinery that can deal with them.

e An already old variant is the one first used by Gutenberg, who used alter-
native cuts for certain combinations of characters. This is comparable with
ligatures. However, to make the look and feel optimal, one needs to analyze
the text and make decisions on what to replace without loosing consistency.

The solution described here does a bit of everything. As it is mostly meant for
a connective script, the starting point is how a scribe works when filling up a
line nicely. Depending on how well one can see it coming, the writing can be
adapted to widen or narrow following words. And it happens that in Arabic script
there are quite some ways to squeeze more characters in a small area and/or
expand some to the extreme to fill up the available space. Shapes can be wider or
narrower, they can be stacked and they can get replaced by ligatures. Of course
there is some interference with the optional marks on top and below but even
there we have some freedom. The only condition is that the characters in a word
stay connected.?

So, given enough alternative glyphs, one can imagine that excessive interword

spacing can be avoided. However, it is non-trivial to check all possible combina-
tions. Actually, it is not needed either, as carefully chosen aesthetic rules put

1Sometimes hz-optimization also goes under the rubric of “Semitic justification”. See, e.g.,
Bringhurst in pre-3"9 editions of his Elements of Typographic Style. This technique does not
work well for Arabic script in general because glyphs are connected in two dimensions. On
the other hand, a certain basic yet ubiquitous Semitic justification can be achieved by using
the tatwil character, commonly called the kashidah (U+0640). We will discuss this later in this
article.

2Much of this is handled within the GPOS features of the OPENTYPE font itself (e.g., mark
and mkmk)

65

some bounds on what can be done. One should more think in terms of alternative
strategies or solutions and this is the terminology that we will therefore use.
Scaling glyphs horizontally is no problem if we keep the scale factor very
small, say percentages. This also means that we should not overestimate the
impact. For the Arabic script we can stretch more — using non-scaling methods
but again there are some constraints, that we will discuss later on.
In the next example, we demonstrate some excessive stretching:

We are texies!

We are texies!

In practice, fonts can provide intercharacter kerning, which is demonstrated next:

0 984

We are texies!

We are texies!

Some poor man’s justification routines mess with additional inter-character kern-
ing. Although this is, within reasonable bounds, ok for special purposed like
titles, it looks bad in text. The first line expands glyphs and spaces, the second
line expands spaces and add additional kerns between characters and the third
line expands and add extra kerns.

We are texies!

We are texies!

Unfortunately we see quite often examples of the last method in novels and even
scientific texts. There is definitely a down side to advanced manipulation.

Applying features to Latin script

It is easiest is to start out with Latin, if only because it’s more intuitive for most
of us to see what happens. This is not the place to discuss all the gory details
so you have to take some of the configuration options on face value. Once this
mechanism is stable and used, the options can be described. For now we stick to
presenting the idea.

Let’s assume that you know what font features are. The idea is to work with
combinations of such features and figure out what combination suits best. In
order not to clutter a document style, these sets are defined in so called goodie
files. Here is an excerpt of demo.lfg:

66

return {

name = "demo",
version = "1.01",
comment = "An example of goodies.",
author = "Hans Hagen",
featuresets = {
simple = {
mode = "node",
script = "latn"
},
default = {
mode = "node",
script = "latn",
kern = "yes",
},
ligatures = {
mode = "node",
script = "latn",
kern = "yes",
liga = "yes",
},
smallcaps = {
mode = "node",
script = "latn",
kern = "yes",
smcp = "yes",
3,
},

solutions = {
experimental = {
less = {
"ligatures", "simple",
3,
more = {
"smallcaps",
},
3,
},
}

We see four sets of features here. You can use these sets in a CONTEXT
feature definition, like:

67

\definefontfeature

[solution-demo]

[goodies=demo,

featureset=default]
You can use a set as follows:
\definefont

[SomeTestFont]

[texgyrepagellaregular*solution-demo at 10pt]
So far, there is nothing special or new, but we can go a step further.
\definefontsolution

[solution-al

[goodies=demo,

solution=experimental,

method={normal,preroll},

criterium=1]
\definefontsolution

[solution-b]

[goodies=demo,

solution=experimental,

method={normal,preroll,split},

criterium=1]
Here we have defined two solutions. They refer to the experimental solution in
the goodie file demo.1fg. A solution has a less and a more entry. The featuresets
mentioned there reflect ways to make a word narrower or wider. There can be
more than one way to do that, although it comes at a performance price. Before
we see how this works out we turn on a tracing option:
\enabletrackers

[builders.paragraphs.solutions.splitters.colors]
This will color the words in the result according to what has happened. When a
featureset out of the more category has been applied, the words turn green, when
less is applied, the word becomes yellow. The preroll option in the method
list makes sure that we do a more extensive test beforehand.

\SomeTestFont \startfontsolution[solution-a]
\input zapf \par
\stopfontsolution

In Figure 1 we see what happens. In each already split line words get wider
or narrower until we're satisfied. A criterium of 1 is pretty strict.> Keep in mind
that we use some arbitrary features here. We try removing kerns to get narrower
although there is nothing that guarantees that kerns are positive. On the other

3This number reflects the maximum badness and future versions might have a different
measure with more granularity.

68

Coming back to the use of typefaces
in electronic publishing: ‘r‘nang: of the
ne’w typographers receiv ttheir kpo‘wh-
edge and information about the rules of
typograph from‘mbookls,nﬁrom computer
magazines or the instruction manuals
which they get wi e purchase of a
PC or soﬂﬂ_ re. There is not so much
basiuc‘;‘insMuction, as of no’wl as there wbs
in the old days, showing the differences
betwk:en good and bad typog phic de-
sign. Many people are just fascinated
bbf t%eir PC's trick‘s,‘g}nd think that a
wjdelbl—pﬁaised program, called up on

e screen, will ma Fsr ing autb—
matic from now on.

Coming back Tb THE USE OF TYPEF%#ES
IN ELECTRONIC PUBLISHIN#}Z MANY OF THE
ne| TYPOGRAPHERS RECEIVE THEIR knO’VVh-
edgjp and inﬂormation about tthe ﬁules of
typogﬂap from books, from computer
magaZineS OR THE INSTRUCTION MANUALS
WHIC‘H THEY GET WITH THE PURCHASE OF A
PC or SOFTW%RE. THERE IS NOT SO MUCH

] |
in t’he old dabzs, sho’wing tthe difﬂerences
between coop anp bad typographic de-
DESIGN‘. Manbr people are jus}t scinated
b THURIK?STRKiS,@ND'UHNKTHA A
widelbl—pﬁaised program, C‘ALLED UP ON
THE SCREEN|, WILL MAKE EVERYTHING auto-
matic from now on.

normal

solution

Figure 1: Solution a.

hand, using ligatures might help. In order to get wider we use smallcaps. Okay,
the result will look somewhat strange but so does much typesetting nowadays.

There is one pitfall here. This mechanism is made for a connective script
where hyphenation is not used. As a result a word here is actually split up when
it has discretionaries and of course this text fragment has. It goes unnoticed in
the rendering but is of course far from optimal.

\SomeTestFont \startfontsolution[solution-b]
\input zapf \par
\stopfontsolution

In this example (Figure 2) we keep words as a whole but as a side effect we skip
words that are broken across a line. This is mostly because it makes not much
sense to implement it as Latin is not our target. Future versions of CONTEXT
might get more sophisticated font machinery so then things might look better.

We show two more methods:
\definefontsolution

[solution-c]

[goodies=demo,

solution=experimental,

method={reverse,preroll},

criterium=1]
\definefontsolution

69

Coming back to the use of typefaces
in electronic publishing: ‘r‘nang: of the
ne’w typographers receiv ttheir kpo’wh-
edgF.‘ and information about the rules of
typogﬂaph fromwbookls,nfrom computer
magazines or the instruction manuals
which they get wi e purchase of a
PC or soﬂﬂ_ re. There is not so much
basi”(‘;‘insMuction, as of now, as there wbs
in the old days, showing the differences
betwk:en good and bad typog phic de-
sign. Many people are just fascinated
bb/ t%eir PC's trick‘s,‘gnmd think that a
wjdelbl—pﬁaised program, called up on

e screen, will make everything autb—
matic from now on.

Coming back Tb THE USE OF TYPEF%#ES
IN ELECTRONIC PUBLISHING:
New TYPOZRAPHERS RECEIVE THEIR kno‘wh-
edgﬁe and inﬂormation about tﬂ’le ﬁules of
typogﬁap from books, from computer
MAagAZINES OR THE INSTRUCTION MANUALS
WHIC‘H THEY GET WITH THE PURCHASE OF A
PC or SOFTW%RE. THERE Is NOT SO MUCH

| bl |

in tﬂ‘le old dab/s, sho’wing tthe difﬂerences
berween coop and bad typogh‘hphic de-
sign. MANY PEOPLE ARE JUST FASCINATED
bbf THEIR PPC's TRIC‘KS, AND THINK THAT A
widelbl—pﬁaised progﬂam, CALLED UP ON
THE SCREEN|, WILL MAKE EVER&THIN& A}Uﬂo-
matic from now on.

MANY OF THE

normal

solution

Figure 2: Solution b.

[solution-d]

[goodies=demo,

solution=experimental,

method={random,preroll,split},

criterium=1]
In Figure 3 we start at the other end of a line. As we sort of mimick a scribe, we
can be one who plays safe at the start of corrects at the end. In Figure 4 we add
some randomness but to what extent this works well depends on how many words
we need to retypeset before we get the badness of the line within the constraints.

Salient features of Arabic script

Before applying the above to Arabic script, let’s discuss some salient aspects of
the problem. As a cursive script, Arabic is extremely versatile and the scribal
calligraphy tradition reflects that. Digital Arabic typography is only beginning
to catch up with the possibilities afforded by the scribal tradition. Indeed, early
lead-punch typography and typesetting of Arabic script was more advanced than
most digital typography even up to this day. In any case, let us begin to organize
some of that versatility into a taxonomy for typography purposes.

70

Coming back to the use of typefaces
in electronic publishing: ‘mang: of tﬁe
ne’w typogrbphers receivk tﬂleir kpo’wh-
edge and information about the rules of
typogﬁaphbf fromwbook‘s,o from computer
magazines or the ins Huttion manuals
which tﬂletf t witﬂq tthé purchase of a
PC or soﬂn‘; re. There is not so much
basi(‘;”insMuctio‘n, as of now, as there was
in tﬂie old dabls, sho’wing tthé digﬂprences
betwken good and bad typog{ aphic de-
sign. Many people are just fascinated
bbf ttheir PC's tricl#s,‘gnd think tthat a
wyiﬂdelbl—pﬂaised program, called up on

e screen, will ma rything auto-
matic from now on.

CbMINk} B\Atb(Tb THE USE OF typeﬂaces

IN ELECTRONIC publishing: MANY OF THE
NEW TYPOGRAPHERS RECEIVE THEIR kno’w]l—
edgkz and inﬂormation about $1é les of
typogﬁap from books, from computer
MA#AZINES OR THE INSTRUCTION MANUALS
WHICH THEY GET WITH THE PURCHASE OF A
PC or SOFTW}ARE. THERE IS N ﬁ so much
C . |
in tﬂ1e old dabls, sho‘wing tthe difﬁerences
between good and bad TyroGrarHIC de-
DESIGN‘. MANY PEOPLE ARE]US’T F‘ASCIN‘{A\TED
B%/ THEIR PC'sS TRICKS, AND THINK THAT A
WIDELY—PRAISED PROGRAM, CALLED UpP ON
THE SCREEN, WILL makie EVERYTHING auto-
matic from no’w on.

normal

solution

Figure 3: Solution c.

Coming back to the use of typefaces
in electronic publishing: bmang: of the
ne’w typographers receiv t%eir kpo’wﬂ-
edgk and information about the ﬁules of
typogﬁaph& fromwbook‘s,; from computer
magazines or he ins ,“uétion manuals
he ith the purchase of a

basi‘ch‘insﬁﬁlniétiqn, as of no’v\(as tﬁ{ere Wbs
in tﬂie old dabls, sho’wing he differences
betwken good and bad typog{ -aphic de-
sign. Many people are just fascinated
bbf ttheir PC's tricl#s,‘gnd think that a
w‘i”delbl—pﬂaised program, called up on

e screen, will ma T ﬂhing autb—
matic from now on.

normal

ComiNG back 1O THE uSse OF TYPEFACES
IN ELECTRONIC PUBLISHING: MANY OF THE
ne’w typographers receivk THEIR KNHWL—
edge and information about $1e rﬁxles of
typogrbp from books, from computer
magAZlNES OR THE INS CTION MANUALS
WHICQH THEY GET WITH THE PURC‘HASE OF A
PC or SOFTW‘ARE. THERE is N ﬁ so much

| o

in ﬂhe old dab/s, sho\wing t}le difﬁprences
between coop and bad typocrarhic de-
sign. MANY PEOPLE ARE JU SCINATED
BF/ THEIR PC's TRIC‘KS, AND THINK THAT A
WIDELY—PRAISED prOGRAM, CALLED up ON
THE SCREEN|, WILL ma]Pu
matic from now on.

EVER THINk,A TO-

solution

Figure 4: Solution d.

71

What’s available?
We have to work within the following parameters:

e No hyphenation ever (well, almost never)

It is commonly pointed out that there is no hyphenation is Arabic. This is
something of a half-truth. In the manuscript tradition one actually does
find something akin to hyphenation. In the ancient Kufic script, breaking a
word across lines is actually quite common. But even in the more modern
Naskh script, the one most normal Arabic text fonts are based on, it does
occur, albeit rarely and presumably when the scribe is out of options for
the line he is working on. Indeed, one could regard it as a failure on the
part of the scribe once he reaches the end of the line.*

But there is still an important rule, regardless of whether we use Naskh,
Kufic, or any other Arabic script. Consider the word below:

Jeldl

It is a single word composed of two cursive strings. One could actually
hyphenate it, with our rule being to break it at the end of the first cursive
string and before the beginning of the second cursive string:

AR
wﬁ.u
Je

Again, it’s a rare phenomenon and hardly ever occurs in modern typesetting,
lead-punch or digital, if at all. On the other hand, it could have some creative
uses in future Arabic script typography.

e Macrotypography (aesthetic features)
In Arabic there are often numerous aesthetic ways of writing out the exact
same semantic string:’

4Indeed, even Latin hyphenation, when it occurs, can be considered a “failure” of sorts.

5This five character string can be represented in Latin by the five character string “al-
hmd (not including the “-”). It is pronounced “al-hamdu”. Note that Arabic script is mainly
consonantal: pure vowels are not part of the alphabet and are, instead, represented by diacritics.

72

A& A sl

Normally we combine OPENTYPE features into feature sets that are each
internally and aesthetically coherent. So in the above example we have
used three different sets, reading from right to left. We’ll call them simple,
default, and dipped.

Just as Latin typography uses separate fonts to mark off different uses of
text (bold, italic, etc.), an advanced Arabic font can use aesthetic feature
sets to similar effect. This works best on distinguishing long streams of text
from one another, since the differences between feature sets are not always
noticeable on short strings. That is, two different aesthetic sets may type a
given short string, such as a single word, exactly the same way. Consider
the above three sets (simple, default, and dipped) once more:

For the above string the default and dipped aesthetic sets (middle and left)
give the exact same result, while the basic one (right) remains, well, quite
basic.

Let’s go back to our earlier example:

NP S IRV A RNIeN)

Note that the simple version is wider than the default, and the dipped
version is (slightly) thinner than the default. This relates to another point:
An aesthetic feature set can serve two functions:
1. Tt can serve as the base aesthetic style.
2. It can serve as a resource for glyph substitution for a given string in
another base aesthetic style.

This brings us back to our main topic.

73

e Microtypography (paragraph optimization features)
Here our job is to optimize the paragraph for even spacing and aesthetic
viewing. It turns out that there are a number of ways to look at this issue,
and we will begin exploring these in the next subsection.

Two approaches

Let us start off with a couple of samples. Qur’anic transcription has always been
the gold standard of Arabic script. Figure 5 we see a nice example of scribal
optimization. The scribe here is operating under the constraint that each page
ends with the end of a Qur’anic verse (designated by the symbol U+06DD (::))
That is, no verse is broken across pages. That constraint, which is by no means
mandatory or universal, gives the scribe lots of space for optimization, even more
than normal.

In Figure 6 we have a page of the famous al-Husayni Mushaf of 1919-1923,
which remains up to this day the only typeset copy of the Qur’an to attain general
acceptance in the Muslim world. Indeed, it remains the standard “edition” of
the Qur’an and even later scribal copies, such as the one featured in Figure 5
are based on its orthography. Unlike the scribal version, the typesetters of the
al-Husayni Mushaf did not try to constrain each page to end with the end of
a Qurianic verse. Again, that is a nice feature to have as it makes recitation
somewhat easier but it is by no means a mandatory one.

In any case, both samples share verses 172-176 in common, so there is lots to
compare and contrast. We will also use these verses as our main textual sample
for paragraph optimization.

Using figures 5 and 6 as benchmarks, we can begin by analyzing the approaches
to paragraph optimization in Arabic script typography into two kinds:

e Alternate glyphs

Much of pre-digital Arabic typography uses this method. Generally, a wide
variant of a letter is used to take up the space which would normally get
absorbed by hyphenation in Latin. Here are examples of three of the most
common substitutions, again, reading from right to left:

G b oolemll o oSl Gl

.

Each of the six strings above occurs in Figure 6. Identifying them is an
exercise left to the reader. We call these kinds of alternate glyphs alternate-
shaped glyphs.

The three substitutions above are the most common alternate-glyph sub-

74

Figure 5: Scribal Optimization. Scribe: ’Uthman Taha. Qur’an, circa 1997.

(0]

»- ~L8_- o S e getened $o 202
[JORT P £ B Al Ofins Y o F S oo

’ e o 2 :.))./.»‘/:/.// swr wJ)
.L,h.:-.)’ax:»,\,p\',,c;;) bbb el

prrore, I s sy Per

27T ;13 ;\“; wall Ske o (] g s

PR 2 roe rcl e vt 2 e 7 N P
:EV;'L_A.;'JL_.‘JQJ mTJ:..iJan.n\Lo)
/ ” ” 'd e e rd

d

-, e 4 = {{ sz ..1 oos sp s
S y S s ey s Iz //I-—/./ 2Pe -
chdjéjgwtw&{dj\bd)&
PIurb o -3 FA s . ;I it - _/.‘- y‘ <
A AR

s

§ 1 4 co. S . D AR Rl)_/
@ ' e 5o 2 ¥yl y &
C L s, - -

, ere, - e e, rr s Irrw, r =
.

L d I - K3 e '(o‘-
s arall laally gs.u.n;wt \,,-_;IU_:M 23,

. s D P it 4 S e - PRI P S
rd rd ” P &—-

gl eI Gy, B
L ey sr 0S SIebS .lz. soc <
Sl 33 Sagms iy 01T ol % @@ 4

Figure 6: Scribal Optimization. Scribe: Uthman Taha. Qur’an, circa 1997.

76

stitutions found in pre-digital Arabic script typography, including some
contextual variants (initial, medial, final, and isolated) where appropriate.
(The scribal tradition contains a lot more alternate-shaped glyphs. A few
lead-punch fonts implement some of them, and we have implemented many
of these in our Husayni font.) The results generally look quite nice and much
more professional than most digital Arabic typography, which generally
dispenses with these alternates.

But one also finds attempts at eztending individual characters without
changing the shape very much. One finds this already in Figure 6. We
call these kinds of alternate glyphs naturally curved widened glyphs, or just
naturally widened glyphs for short. Sometimes this is done for the purpose
of making enough space for the vowels (which in Arabic take the form of
diacritic characters). For example:

L .

wE s
Lﬁ*u..) — Lé"\:t

As you can see, there are two letters that have been widened for vowel
accommodation. In Figure 6 there are some good but near-clumsy attempts
at this. We say, “near-clumsy” because the typographers and typesetters mix
natural, curved, widened variants of letters with flat, horizontal, extended
versions. One reason for this is that a full repertoire of naturally curved
glyph alternates would be much too unwieldy for even the best lead-punch
typesetting machines and their operators. Even with these limitations one
can find brave examples of lead-based typesetting that do a good job of
sophisticated paragraph optimization via glyph alternates, both widened
and alternate-shaped. Figure 7 is a representative example (in the context
of columns).

Careful examination of this two-column sample will reveal the tension
between naturally widened and horizontally extended glyphs in the execution
of paragraph optimization. On the other hand, there is one apparent “rule”
that one finds in this and other examples of lead-punch Arabic script
typesetting:

Generally, there is only one naturally widened character per word
or one alternate-shaped character per word.

In Figure 5 one can see that this “rule” is not always observed by scribes,
see, e.g., the middle word in line 9 from the top, which uses two of the
alternate-shaped characters we encountered above (can you identify that
word?). But we still need some constraints for decent-looking typesetting,

7

Figure 7: Mixed Alternate Glyphs in Two Columns. From the classical dictionary

L

- VY — (.Lv

(LT 5 CT 5 0 15
oy as o ol P
Ll oy el f*“ﬁj(éi:)
ot e
sy . ﬁ%é“‘y&;LM\{
O‘Uj‘(y{—;); . }‘L.-‘L;Tr:l__
Gl (ada)y () ol Y
(AT A2y b

o)y (s
(@-\); e Lt L. il
A\ oo L L UG
w(f\-i‘)ad»s(u, e
Yl o () 5 AL s
O i PP
;\(;:‘T)) . ilLai\(ﬂLi\))
pram s e Yo b 51 42 L) L

. .‘)\E:TJT(;:-:&:T)} . o‘}:.;

o-\’\ &

b b g ae (L) — 1 J o %
de (UL oSO ae ()5

|

S (5 e
.,_,.\ll(:\L:i.:)u,u;,::.\i;
Q;J(‘T(ri-—;) —prdo %
(G5 T ol ()
eT(de)s s g oo o o
pb-_ﬁllm(;&l),.&)
ui((Lle); (rxlzlﬁ\)w
(L), .3

iy ,t.anu,,g
(wxcu,_(fx.u), : &)f.llw_l
e g (B
TR {‘3*-—*“(@—-1\
ket a3y o 87 G
Héij|(fl‘y‘)’ Ceddl
H‘J 5 5 kS
O 0 i (Wit
(s« (a3
-l ;.5;\ el LAY
AW al LT ;,.Trufjl,,
L5 G5 ol Sl s

«LZL”JWJQJ.'L\JJ‘ YVW—‘(T—;)L“};, (\)

Mukhtar al-Sthah.

78

and the above tentative rule is a good place to start the analysis. For
widened characters in particular we see that even the scribe (Figure 5)
closely approximates this rule. So let’s begin improving on our tentative
rule somewhat, and expand it into a number of possibilities. Let’s look at
the naturally-widened-glyph case first:

Generally, there is only one naturally widened character allowed
per word. However, two extended non-consecutive characters
may be allowed. (The logic of the experimental font Husayni
already has contraints that prevent consecutive curved widened
characters).

For example, we prefer to get widening like the following:

—

4

TT

s e
o o Jore

rr

(
T

But as, e.g., a last resort or for stylistic purposes we can also do

T
s(
if
T

“ e “

Or even better, we mix it up a bit. That is, if there is more than one
widened character, one should be longer than the other, e.g.:

v o o o e o o e

One will notice that the middle substitution (where the first widened
character is longer than the second) does not look as good as the two outer
ones (where the second is longer than the first). These kinds of aesthetic
issues can be formalized for future work. In the meantime, here is a working
modified version of the rule for naturally-widened-glyphs:

Generally, there is only one naturally widened character allowed

per word. However, two non-consecutive widened characters may

be allowed. In that case, the second widened character should be

longer than the first.

79

One case where cases of two naturally widened character will be common
is in poetry, which involves wide lines. We’ll say more about this in the
section on flat extending.

Now let’s look at the alternate-shaped case:

Generally, there is only one alternate-shaped character allowed per
word. However, two non-consecutive alternate-shaped characters
may be allowed.

So we prefer, e.g.,

Osaiemy o« 0

but we could have, e.g, as a last resort or as a stylistic option,

\/f@ - O)"’"’{’

Again, in poetry this kind of multiple substitution within a single word could
occur frequently. A challenge will be to develop a system of parameters
where we can almost predict which kinds of substitution will happen under
a given set of values of those parameters.

¢ Flat extending
In the transition from lead-punch to digital typography, alternate-glyph
substitution largely vanished.® The problem of spacing remained, and a

6Indeed, as was the case with Latin typography, Arabic script typography took a sharp turn
for the worse with the advent of digital typography. On the other hand, Latin typography
recovered much more quickly, in large part thanks to Knuth’s development of TEX.

80

0g =

ST o5 5 - T 2l 2oy 00T 3e) esp2 9T 5,87 06 06
&) 3G gadll 3 G55 56 0T 5 sl 58, d B o2 8l [y o v] o

sh k) cdan AVT Q5 I sh Bus ne 26T Y g BT e 50T s
Figure 8: Poetry Justification in ArabTgX.

simple yet inelegant solution was adopted: flat, horizontal extending of
characters. Now this solution did have some precedent in pre-digital Arabic
typography, as you can see in Figure 6 and Figure 7. This solution had
the advantage that it required only a single character: a simple horizontal
bar called a tafwil or more commonly a kashidah (U+0640). This character
could then be repeated as often as necessary to fill any extra space.

Now an examination of pre-digital books shows a (rather wise) reticence
to using this method too slavishly. That reticence has now been thrown to
the winds. This can be seen by looking at the standard implementation of
flat extending as provided by Microsoft Word. This program provides three
levels of extending that it calls “justification”. See Figure 9 for examples
of all three. The minimum level is actually very close to the default (i.e.,
no-justification) level. Note that the sample text used in Figure 9 is the
same as that used in the earlier samples from the Qur’an.

Older implementations of Arabic script within TEX, such as ArabTEX and
Omega/Aleph, also provided facilities for flat extending. The most common
use was in poetry, which requires a fixed width for each stanza.

In Omega/Aleph, a method based on \xleaders was used, based on a very
thin tatwil glyph (much thinner than U+0640) that could be used for very
fine extending optimization based on TEX’s badness parameter. One nice
application is in marginal notes: See Figure 10, where the marginal note on
the right is zoomed in. On the other hand, we see that the leaders method

81

e 1 g Gy v 3;34333‘5%“5 15 F‘“’Jjb“w“"g"“‘“”'w
mf‘Yw f5 ¢ f&ﬂw‘w ol el el s i o

fa e Z

Y\rsjjm;go)lfbu&:})\ M\;égo)fwjum\wwxdﬁ\uup&duw\wr

i 4 C

s sae Oy O

N\

L3y, Y 15R) dm Sdsf vy v‘J‘ ENCRL CEUR AR T IR ERAFEAI RN

z

G il 5,00)5 dA.u S 3 i O as yve i e st W 0 sy ;)\1;5\3

WA g

s VY Byisd 35 2280 o) bjﬁ_w\j U U ol e 1,0, 45T i g 1
(\M)L&Y}CL_’J_&JL_,;!U_@ PSP J_auujﬂjg.\v_;ﬂ.x_l e 1Kl
L o gty U o 2 J)u\ Ls 55255 20 &y v vy) yas adn o SPE
Siie s o8 Vs a2 Vg U Y e o o8 Gt o s
yvo U o skt L Wu g esady D5 s s ELdsf Vv e

< [4 8 7.0 ."& £,° ,‘/,/“&E/l
W e Bls) OS @ 1sali o) O 7 Gy OB JE all O &S

\VY uy_i;.:‘_,w__suu_ub;_w\”s _Au_ﬁbu_»\,_lf\)_ﬂd.uu_g:\p
C_,J_;,jla_,p\u_d PRI ETPEEUINTITRNE PR ST A FIE O]
R JUPE T SR R SRNCE N AR RSP o U IR
T 208y LBl et o B e il O S L G v L)
iy B g sd e b vve o oie s A5 N sy g
5 ;}ip s Jis A uu _,u; yVo J_J\ u_& A \ L o Wb ;)\.1_;)\5

e deduwawwb

Figure 9: Flat justification from Microsoft Word 2010.

82

AN R CAVA1) R TENEREN

L e N -

P ISE Y S (@) L i

U o1 S
] ‘/ ’ l,ﬂ . ““—__“‘_”J'J‘];YT

S5 5 3 5 BED b
= < oo g 0 J-;-j ‘g—:—é—.:.jg'?}'
JE 5l L R S

Figure 10: Marginal-note justification in Omega/Aleph.

creates extending that may be considered too perfectly even: Do we want
to impose the rule that only one character should be extended per word
(or at most two non-consecutive characters)? I have seen a lot of older
digital Arabic typography that does even extending, including the poetry
in the ArabTEX sample in figure 8. Compare this with the Microsoft Word
method (Figure 9). The method used in Microsoft Word, with only one
extension per word, seems to be the current standard for flat-extending
justification.
On the other hand, the justification used in Microsoft Word is not particu-
larly aesthetically pleasing. The answer will lie, again, in parameterization
of some sort to be determined. As TEXies, we want to be able to have fine
control over this kind of behavior in any case. In the meantime, we mirror
the same rule we arrived at for naturally-widened-glyphs:
Generally, there is only one flat extended character allowed per
word. However, two non-consecutive extended characters may be
allowed. In that case, the second extended character should be
longer than the first.

For example:

83

In accordance with our working rule, the top substitution uses only one flat
extended character. The bottom uses two, but the second is longer than
the first.

In our own estimation, the smaller the type, as in, e.g., footnotes and marginal
notes, the less aesthetic variants that are needed. And the less aesthetic variants
needed, the better that flat extending will work as a solution. Consider another
example of the same word processed in three different variants:

A el desd!

In this case our default is on the left. The variant on the right is about as basic
as one can get; the default on the left is a sophisticated aesthetic variant. The
middle one is, well, in between. Let’s try them with flat extending, using only
one extended character per word:

S N B N o)

On the left, we have an aesthetic combination of letters followed by a flat tatwil.
This is what Microsoft Word would give us, and the result is aesthetically dis-
tasteful. In the word on the right, however, the flat extension fits well with the
basic nature of the feature set. As for the middle one, it could go either way and
we leave it to the reader to decide what one thinks.

Now let’s repeat with more naturally curved widening:

S BN U S R e |

Here, the variant on the left comes out much nicer. The one on the right looks
okay with curved widening, although one could arguably do better with flat
extending, at least in some contexts. The middle one, again, could go either way,
though we think it does somewhat better with curved widening compared to the
one on the right. The variant on the left only works well with curved widening.

84

Towards a ConTEXt solution
In what follows, we will focus on a solution to the problem of paragraph optimiza-
tion via alternate glyphs (including alternately-shaped and naturally-widened
variants). It turns out that the \xleaders method used by Omega/Aleph does
not work in LUATEX, so flat extending could not be naively implemented that
way. At the moment flat extending is yet to be implemented in CONTEXT.
Since flat extending is so ubiquitous in current Arabic script typography, and
since it does have important applications (poetry and small font sizes where one
prefers simpler aesthetic variants), one could ask why this was not implemented
first. In part, this is because the immediate priority of the Oriental TEX project
has been top-notch, unparalleled aesthetic sophistication of the script. As we
noted above, flat extending does not work so well with sophisticated aesthetic
variation. So although the flat-extending problem is apparently simpler, it is
understandable that we have focused on the more difficult problem first. A
clear understanding of the issues and challenges involved with the more general
alternate glyph method will help us implement a solution to the the flat-extended
problem as a special case. We will come back to this issue towards the end.
Let us now consider the current experimental CONTEXT setup for paragraph
optimization for Arabic script.

Applying Features to Arabic script

We’re now ready for the real thing: Arabic script. The initial setup is not that
different from the Latin script case.

Applying Features to Arabic script

We're now ready for the real thing: Arabic script. The initial setup is not that
different from the Latin script case.
\definefontfeature

[husayni-whatever]

[goodies=husayni,

featureset=default]
\definefontsolution

[FancyHusayni]

[goodies=husayni,

solution=experimentall
\definefont

[FancyHusayni]

[file:husayni*husayni-whatever at 24pt]

85

But here the definitions in the goodies file look way more complex. Here we have
only one shrink set but multiple expansion sets.

local yes = "yes"
local basics = {
analyze = yes,
mode = "node",
language = "dflt",
script = "arab",
}

local analysis = {
ccmp = yes,
init = yes, medi = yes, fina = yes,
}
local regular = {
rlig = yes, calt = yes, salt = yes, anum = yes,
ss01 = yes, ss03 = yes, ss07 = yes, ss1l0 = yes, ssl2 = yes,

ss15 = yes, ssl6 = yes, ss19 = yes, ss24 = yes, ss2b5 = yes,
5826 = yes, ss27 = yes, ss31 = yes, ss34 = yes, ss3b = yes,
5836 = yes, ss37 = yes, ss38 = yes, ss4l = yes, ss42 = yes,
ss43 = yes, js16 = yes,
3
local positioning = {
kern = yes, curs = yes, mark = yes, mkmk = yes,
}
local minimal_stretching = {
js11l = yes, js03 = yes,
}
local medium_stretching = {
jsl2=yes, jsOb=yes,
}
local maximal_stretching= {
js13 = yes, js05 = yes, js09 = yes,
}
local wide_all = {
jsll = yes, jsl12 = yes, js13 = yes, js05 = yes, js09 = yes,
}
local shrink = {
flts = yes, jsl17 = yes, ss05 = yes, ssll = yes, ss06 = yes,

ss09 = yes,
}
local default = {

86

basics, analysis, regular, positioning,
}
return {
name = "husayni",
version = "1.00",
comment = "Goodies that complement the"
"Husayni font by prof.Hamid.",

author = "Idris Samawi Hamid and Hans Hagen",

featuresets = {
default = {
default,
1,
minimal_stretching
default,
jsll = yes, js03 = yes,
1},
medium_stretching = {
default,
jsl2=yes, jsOb=yes,
1,
maximal_stretching= {
default,
js13 = yes, js05
1,
wide_all = {
default,
js11l = yes, jsl2 = yes, jsl13 = yes, js05
js09 = yes,
1,
shrink = {
default, flts = yes,
js17 = yes,
ss05 = yes, ssll = yes, ss06 = yes, ss09
1,
3,
solutions = {
experimental = {

]
-~

yes, js09 = yes,

less = {
"shrink",

3,

more = {

yes,

yes,

"minimal _stretching", "medium_stretching",

"maximal_stretching", "wide_all"

There are some 55 stylistic and 21 justification features. Not all make sense
when optimizing. We predefine some LUA tables to make the sets and solutions
easier to understand. The default rendering looks as follows:

\FancyHusayni

\righttoleft

\definefontfeature[rasm] [script=arab,ss05=yes, js06=no,ssbb=yes]
\addff{rasm}

\getbuffer [sample] \par

S o) & TS 055 b o \,(\y\; Gl el
JeT B5 il 25 M el ;J; el L@ S g
sz I S Jos .

t,&\.'m
\
e
C
\
\
Y
E
A\
(X
c:,é\
\0
2?‘
%... .
I
%__
\“L
[\
&

AT 15T ST L) {\&\ : w;]
Qs - 7 O Gy 7 o} 0; _ c 4 % -
ob &5 @iy LUl ke ;;p\ [@ V,JL u\,w\,f @m/

Note that we already have a degree of widened substitution in this example.
This is all for the accommodation of vowels, and is defined entirely in the OPEN-
TYPE tables of the font. We also added some special orthography (the rasm font
feature to get the Qur’anic features just right). You can also do this by adding the
feature to the 1fg file (local regular =). There is no paragraph optimization
as yet, although the default LUATEX engine does a good job to start with.

88

Next we show a more optimized result:
\setupfontsolution

[FancyHusayni]

[method={preroll,normal},

criterium=1]

\startfontsolution[FancyHusayni]

\FancyHusayni

\righttoleft
\definefontfeature[rasm] [script=arab,ss05=yes, jsO6=no,ssbb=yes]
\addff{rasm}

\getbuffer[sample] \par

\stopfontsolution
% . ‘L }} 0% of /a/ w - -;"’ /flg._/
ol 4 1, AT 0555 G i e 1 ik ST w5

Js ”3;.;%%7’°3535T34,;L\§,\;wu 4 Sis &)

< /?// _ °,a/ ,'.""//E"'//./ }o//.;,,,? o B
4 Oy cle=ll F Wl U316 0,85 S d\;@(‘zj
P P - - TR '

s }1,0 ;}w/} - 5, % . P .o };i _ __,/oéy z z 5/;
p3)t B V5 ST Rt 5 0BT G L T5) S
s 2 > - o
- 2 Z
:/\/ ;' TO}/{ %T < ;\S‘T ; T/OT Q5 4 1 é ‘:\5 o/“// ° w/./“ \J/
L R N I S I AN A
‘?E - \7 O a7 // °/q ° - < C -o/cﬁa //. Iy \ /ﬂohc
d\a; l's QL:-H 2 ol gj//leb; SIadlg (sudbl,
]

!
q]

GUs A oS @ it ST 057 G el 5
¢

Now let’s see what happens when \parfillskip = Opt, i.e., the last line has
no extra space after the end of the paragraph. This is important for getting, e.g.,
the last line of the page to end with the end of a verse as we discussed earlier:
\setupfontsolution

[FancyHusayni]

[method={preroll,normal},

criterium=1]

89

\startfontsolution[FancyHusayni]

\FancyHusayni

\righttoleft
\definefontfeature [rasm] [script=arab,ss05=yes, js06=no,ssbb=yes]
\addff{rasm}

\parfillskip=0pt

\getbuffer[sample] \par
\stopfontsolution

0 98 o~ oﬂ

2T rJJ u\p; A @ NS é\:\; 2

o - . - _) z L);‘_’
F150 56 Vg gl s kil y\p,éeﬁp;\ 5
J51 G dpades u,.o“\ \;L ' @(\.zjjslé m:)fq;

u\w\/ uu M\ "/‘ ; .xH _J.J | @ (J\ u\.Lp

czsT J”‘wt_,us‘ u\&gﬂ\u ,@L

-

@%*w@u@\dw\umu d.J-L

Just as the effects are more visible in the \parfillskip = Opt case, the
impact is much larger when the available width is less. In figures 11, 12, 13, 14,
and 15 we can see the optimizer in action when that happens.

In our estimation, the current experimental solution works best for alternate-
shaped glyphs, although there is some success with naturally widened characters.
Clearly, some widened substitutions work better than others. A lot of fine
tuning is needed, both within the OPENTYPE features as well as the optimization
algorithm.

Without going into a detailed analysis at the moment, we restrict ourselves
to two critical observations.

90

sl Il o0l Al
A @@p 0 e frs

-

U

\
“\

Z

-

%, -
\So
D

$
s

=
\32 0
e
[\

\&
S

N
v 6
>
\
Ca
Cw
[t
~ 0
C
?Zi
IS
Gy
\
\ég\

*\

&5
—

\

N

C-\
&9\‘,

-\

I
(o

NS

e
G
&

—%

\(\

-

.
-

e Ll el | e s LR L D

~ o0&

C L el B Al B 7 L cusnll i 8
B ST LT T 55
normal narrow

Figure 11: A narrower sample (a).

91

-

-

L. ~= e fg. _Le BE
o et 0 @l ol
A ST G LT TS

G i £ 5 2
PR
j;pjb.,p\ g}
L= s T e
415, ke 4
Ojﬂf?.:j .s:S/ ST
E),K\:u é,ti_ig . :
).“, /q/a . 2 .
Al T Mokl &

/.,e oyt co-
U‘J&) 9 M‘ rﬁ

P8
L;\ @ RINCHE{ S

0,98 ~
s A AT
v

0

€\
— '

-~

Lo

\
\

\
\

U
—
nwu SE}:\
o
~
&L te
o

WO ¢

B
-\

S
\
(; \
=
C
—
N
\
Ca
t,&\a

A&

e

L

—
\
\
—
N

-
.
-

S
S

L4

oZ

—
\é\
&)

\
~
\
oe&

| i iﬂ PR R)

. &~ S - W
OL b 1, K315 90555 s v—mja
Coe T e TR et i 5 08,8
e U\S@ SR L")\

— oo - . oL

,”

e s T 2als BT GalE

Oirity S]] G
PRETY: PR N T R
P 0 g n
dj{\a’ v gﬂ—;‘_)j‘ M 683 L
I }ﬂ}w/} // P @
RN AT
4 - o8t o w/,ﬂ // “0o-
Slle (A5 5 Y f5
P 2
B Gl 2T g
[4 O %~
a"/é.il\g Q A215 L‘g-@:\:
. a7 T °} - :E-’/T a
PR A S 4
9\ = ‘ J; ;\»\) . s /}ﬁ
o /q//? _ o 2 - o

92

narrow

Figure 12: A narrower sample with no parfillskip (b).

o 22 o0

| 0 g% o0 o8 O

R \}K\‘;j\i &.:\ST Ué

Cws wwu
*& &
é\'— C;é\\ \
—
Ll

al s%\,,
©F
“ny, O°°
2w

(;—\l
C

5
Tt

LAY

(‘~\
E‘i\ \
-

Z

;.-4
v
=

o
N

? O 72 o s : .
i | g Oyt 3814870

oo g e 0 % . -t
AL AT < AT S0
sl Gl Sy
o 00w 4 e - 40
sl oIl
O ;'\‘ // °ﬁ/,oi\ _‘/'/
@@ LU L ¢

/\/ = Tae bt EET T

SV J7 Aoy el

P d
o aro e B .o

o 88 o b F3
o 7 et
2 \95 \‘}._,J\s- d,.;ﬁj‘ L;Sx[‘..
L oo oA °

Lo s 1. R PRV /w/
A Ty sl S5 Bk

- o, | o W
- - - - 28 g
Yy danal a5 AT (TN

28
e 1 4 /./ 5}// ° *“/.}
@R S 5 5

- 2
AL Gl L

-

c " ,?/5»0 _ 3 /5"’/ T
gf/g.\lb _,\vL_;L‘) &..L;LL/
P - o} 5 Ev/./

G U iU

s J T 5 e
R N AP
S el S 0157 &
f .
doxr olas

normal

narrow

Figure 13: An even narrower sample (c).

93

-

94

[

i Sl e
5 G o e 6]
S AST 0L & 1,5
L S
g rmj & 9
A el uj UA\
eSS

s s 6 47 v ¥
@ & S @l o)
I T 0,85 Gl O
7 T - % o,‘,f J'l"a
Sy SOl G

ey o

o 88 o

8T, 2l Gl G T

S5 o2 2 e
ot) Ol 4 1y Sl
o Gl @D s
sl Rl
e Jo g i
el e T ke 1
gl e dhal 2 Al
© e F130 56
s A7 v 3
D fe=5 Sse Al)
./ \l

SETY sk & o6
\ 2 ﬁ) \M’SJI yﬁ

Gl 24T g

normal

narrow

Figure 14: An even narrower sample (d).

%) BINE e

all %k = Uy
Gy il 25 3305
T e] i

@ ‘) 5 @]
T 0285 Ll &
>‘¢/°T L AT i
yﬁﬁﬁﬁg@ﬁj

NSRRI RPN
el b 9T 8
f"-"' o o ‘9)
;,JST éww @ﬁfﬂ

L W\ |”’]

normal

r’/ /uf ‘}r (a""s«fjgj
/\/5 (;wﬂ' ﬂ”wf

narrow

Figure 15: An even narrower sample (e).

95

First, in our tests one will notice that the glyph substitutions tend to take
place on the right side of the line. They should be more evenly distributed
throughout each line.

Second, we can say that the current method works better for alternate-shaped
glyph substitution than it does for naturally-widened glyph substitution. This
leads us to the next step in this research project:

Within the Husayni font there is now a mapping between flat extending via
tatwil and curved widening via alternate glyphs. Consider the following manually
typed UTF text using the tatwil character (U+0640):

Ji=s \ARROW\ J__.=$
In flat-extended typography that comes out like this:

JE

Husayni, through the optional Stylistic Alternates feature (salt) will map the
flat tatwil-extended characters to curved widened characters. So with salt=yes

selected in CONTEXT we get

This opens up a way to connect a forthcoming solution to the flat tatwil-
extended character method with the curved widened-glyph method. A future
version of the optimizer may be able to optimize the paragraph in terms of the
tatwil character and a set of rules along the lines we discussed earlier. Then we
can simply convert the result to curves using the tatwil character. At least this is
one possibility.

The second author is currently working on an updated version of the Husayni
font. The updates include improved character shapes and possibly the use of the
OPENTYPE variable font mechanism to provide a bold typeface.

Conclusion

In this article, we introduced the CONTEXT paragraph optimizer and showed
how it can be used in conjunction with a sophisticated OPENTYPE font for Arabic
script typesetting. We argue that the current paragraph optimizer, even in its
experimental status at the moment, represents one of the greatest and most
important steps in the evolution of digital Arabic script typography. Its potential

96

impact on for Arabic script typesetting is immense, and we excitedly look forward
to its completion.

Orientalsky TEX: Optimalizace odstavcového zlomu

Clanek popisuje systém pro optimalizaci odstavcového zlomu pii sazbé arabstiny
ve formatu CONTEXT. Implementace je predstavena na tryvcich v latince. Clanek
nasledné popisuje zakladni vlastnosti arabského pisma a znadmé postupy pri
optimalizaci odstavcového zlomu. V zavéru ¢lanku je jeden z popsanych postupt
vyuzit pri sazbé pasize z Koranu.

Keywords: mikrotypografie, OPENTYPE, CONTEXT, LUATEX

97

MetaPost: PNG Output

l TACO HOEKWATER I

Since the version 1.80x, MetaPost has a third output backend: it is now possible
to generate PNG bitmaps directly from within MetaPost.

Keywords: MetaPost, PNG.

Introduction

For one of my presentations at EuroTEX2012 in Breskens, I wanted to create an
animation in order to demonstrate a MetaPost macro that uses timer variables
to progress through a scene.

While working on that presentation, it quickly became obvious that the ‘tra-
ditional’ method of creating an animation with MetaPost by using ImageMagick’s
convert to turn EPS images into PNG images was very time consuming. So
much so, that I actually managed to write a new backend for MetaPost while
waiting for ImageMagick to complete the conversion.

Simple usage

MetaPost will create a PNG image (instead of Encapsulated PostScript or Scalable
Vector Graphics) by setting outputformat to the string png:
outputformat := "png";

outputtemplate := "%j-%c.%o";
beginfig(1);

fill fullcircle scaled 100 withcolor red;
endfig;

end.

This input generates a bitmap file with dimensions 100 x 100 pixels, with
8-bit/color RGBA. It shows a red dot on a transparent background.
Adjusting the bitmap size

In the simple example given above, MetaPost has used the default conversion

ratio where one point equals one pixel. This is not always desired, and it is tedious
to have to scale the picture whenever a different output size is required.

98 por: 10.5300/2017-1-2/98

To allow easy modification of the bitmap size independent of the actual
graphic, two new internal parameters have been added: hppp and vppp (the
names come from Metafont, but the actual meaning is specific to MetaPost).

In MetaPost, ‘hppp’ stands for ‘horizontal points per pixel’, and similarly for
‘vppp’. Adding

hppp := 2.0;
to the example above changes the bitmap into 50 x 100 pixels. Specifying values
less than 1.0 (but above zero!) makes the bitmap larger.

Adjusting the output options

MetaPost creates a 32-bit RGBA bitmap image, unless the user alters the value
of another new internal parameter: outputformatoptions.
The syntax for outputformatoptions is a space-separated list of settings.
Individual settings are keyword + = + wvalue. The only currently allowed ones are:
format=[rgbalrgbl|grayalgray]
antialias=[none|fast|good|best]
No spaces are allowed on the left, nor on the right, of the equals sign inside a

setting.
The assignment that would match the compiled-in default setup is:
outputformatoptions := "format=rgba antialias=fast";

however, outputformatoptions is initially the empty string, because that makes
it easier to test whether a user-driven change has already been made.
Some notes on the different PNG output formats:
e The rgb and gray subformats have a white background. The rgba and
graya subformats have a transparent background.
e The bitdepth is always 8 bits per pixel component.
e In all cases, the current picture is initially created in 8-bit RGB mode. For
the gray and graya subformats, the RGB colors are reduced just before
the actual PNG file is written, using a standard rule:

g =0.2126 %7+ 0.7152 % g + 0.0722 % b

e CMYK colors are always converted to RGB during generation of the output
image using:
r=1—(c+k>171:c+k)
g=1—(m+k>171:m+k);
b=1—(y+k>171:y+k);

If you care about color conversions, you should be doing a within <pic>
loop inside extra_endfig. The built-in conversions are more of a fallback.

99

What you should also know

MetaPost uses cairo (http://cairographics.org) to do the bitmap creation,
and then uses libpng (http://www.libpng.org) to create the actual file.

Any prologues setting is always ignored: the internal equivalent of the glyph
of operator is used to draw characters onto the bitmap directly.

If there are points in the current picture with negative coordinates, then
the whole picture is shifted upwards to prevent things from falling outside the
generated bitmap.

Summary: MetaPost: PNG Output

Od verze 1.80x ma MetaPost treti mozny vystupni formét obrazkt. Nyni je
mozné generovat obrazek ve formatu PNG primo v MetaPostu.

Klicova slova: MetaPost, PNG.

100

Mapy v BTpXovych dokumentoch —
predstavenie balicka getmap

l ALES KozUBIK I

Cielom prispevku je predstavenie balicka getmap. Tento bali¢ek umoziuje do
ETEXovych dokumentov zaradit mapové materialy ziskané z externych zdrojov,
ako st OpenStreetMap alebo Google Maps a to aj s podporou Google Street
View. V najjednoduchSom pripade pritom postaci aj Specifikdcia pozadovanej
adresy. Balicek pre stahovanie map pouziva externy Lua skript, ktory si vyza-
duje aktivaciu funkcie \write18. Tento skript mdze byt pouzity aj samostatne
z prikazového riadku.

KTacové slova: Mapy, IMTEX, getmap, Lua

Uvod

Pozname to vsetci — obcas treba do dokumentu zaradit obrazky, ktorych obsahom
je mapa urcitej oblasti alebo lokality, pripadne aj s vyznacenim trasy. Niekto
sa s tymto problémom stretdva Castejsie (ak sa napriklad venuje geografii alebo
pripravuje materidly pre cestovatelov), iny zriedkavejsie, napriklad pri priprave
pozvanok a pokynov pre konferencie. Ale urcite sa s touto tlohou stretol kazdy.
My si v tomto prispevku predstavime uzito¢ny balicek getmap, ktory umoznuje
priamo do I¥TEXového dokumentu zakomponovat obrazky z takych zdrojov, ako
st OpenStreetMap alebo Google Maps véitane vkladania obrazkov z Google Street
View.

Podstata cinnosti balicka getmap, ktorého autorom je Josef Kleber, je po-
merne jednoduchd. Bali¢ek vlastne obsahuje jeden jediny prikaz \getmap, ktory
prostrednictvom jednoduchého Lua skriptu zabezpeci stiahnutie pozadovaného
obrazku, teda mapy alebo fotografie z Google Street View, do Specifikovaného
grafického stiboru. Takto ziskany stibor potom vlozime do ETEXového dokumentu
pomocou \includegraphics. Zlozitejsie ako samotny prikaz si teda jeho voli-
telné argumenty, ktoré specifikuju pozadovany obrazok. V ¢lanku sa teda budeme
venovat tymto volitelnym polozkam.

Na spravnu ¢innost prikazu \getmap je potrebné aktivovat funkciu \write18,
¢o pri pouziti TEXLive znamena kompilovanie s prepinacom --shell-escape
resp. pri pouziti MiKTeXu --enable-write18. Nakolko mapy vkladdame do textu
ako obrazky, je taktiez potrebné nacitat bali¢ek graphicx.

por: 10.5300/2017-1-2/101 101

mapquest ©2015 Mapuest Some data ©2015 "DpenstrectMap and contributors, Db

Obrazok 1: Ukazka vystupu ziskaného pomocou \getmap. Zobrazena je ndhodne
vybrand adresa v centre mesta Zilina

Prikaz \getmap

Ako sme uz spomenuli, balicek getmap obsahuje de facto jediny prikaz, ktorého
plna syntax ma tvar:
\getmap [volby] {adresa}

V najjednoduchsom pripade staci poznat len adresu, POI alebo geografické
GPS stradnice zvoleného miesta. Polozka adresa musi byt plne rozvinuta a nesmie
obsahovat ziadne makré. Ziskany obrazok sa implicitne uklada do stiboru s ndzvom
getmap.png, ktory sa je ulozeny v aktudlnom pracovnom adresari. V pripade,
ze do nasho dokumentu vkladame len jednu mapu je tento mechanizmus plne
postacujuici.

Prislusny zdrojovy kéd by teda mohol vyzerat napriklad takto:
\getmap{Narodna 25, 01001 Zilina, Slovakial}

\includegraphics [width=.5\1inewidth] {getmap}
s vysledkom zobrazenym na obrazku 1.

Pri opétovnej kompilécii siboru je potrebné si uvedomit, ze nedochadza ku
prepisovaniu ziskaného obrazku getmap.png. To sice urychluje kompilaciu, na
druht stranu, ak déjde ku zmene v zobrazovanej adrese, to mé za nésledok, ze
obrazok v dokumente sa vlastne nezmeni. To je mozné riesit bud odstranenim su-
boru getmap.png z pracovného adresara pred novou kompildciou, alebo vhodnou
volbou pre prepisovanie siiborov, o ktorej budeme hovorit neskor.

Volby prikazu \getmap

Cinnost prikazu \getmap podstatnym spésobom ovplyviuji volitelné argumenty.
Dokonca je mozné povedat, ze su ddlezitejsie nez samotny prikaz. My si predsta-

102

Zilina [F])

o
Okresny sud Zil

ina

b Eurotaxi
n

o
Al Lo
Map data ©2015 Google

Obréazok 2: Ukazka vystupu na obrazku 1 ziskaného z Google Maps pomocou
volby mode=gm. Zobrazena je rovnaka adresa v centre mesta Zilina

vime iba tie najdolezitejsie, resp. najpouzivanejsie z nich, uplny zoznam je mozné
néjst v manudli [3].

Volba mode

Volitelny argument mode moze nadobudat jednu z troch hodnét osm|gm|gsv
a urcuje, ktory mapovy zdroj bude pouzity. Z hodnoty argumentu je intuitivne
zrejmé, ktory zodpovedd OpenStreetMap, Google Maps alebo Google Street View.
Ako implicitny zdroj je preddefinovany OpenStreetMap. Ak by sme teda chceli
vysledok na obrazku 1 ziskat pomocou Google Maps, je potrebné prikaz upravit
takto:

\getmap [mode=gm] {Narodna 25, 01001 Zilina, Slovakial}

Vysledok si m6zeme pozriet na obrazku 2 .

Volby file a imagetype
Volba file=subor umoznuje pomenovat vystupny stbor, ktory bude vytvoreny
prikazom \getmap. Nazov siiboru sa uvadza bez pripony. Na stanovenie grafického
formatu ziskaného vystupu sa potom pouziva volba imagetype, ktord moze
nadobudat niektord z hodnét pngl jpegl jpglgif, pricom ako implicitny typ je
subor vo formate png. Tato volba uz je ale viazana na pouzity moéd, pricom
uvedené hodnoty st dostupné pre mode=osm. Pri pouziti médu gm st dostupné
este dalsie grafické formaty, ako napriklad png8|png32.

Ak si teda uvedomime, Ze pri spracovani obrazku 1 bol pouzity implicitny
nazov suboru getmap, je zrejmé, ze subor vlozeny do obrazku 2 je potrebné aj
premenovat. Uplny zdrojovy kéd pre vistup na obrazku 2 teda vyzera takto:

\getmap [mode=gm, file=myobr] {Narodna 25, 01001 Zilina, Slovakia}

103

Obrazok 3: Ukazka vystupu rovnakej oblasti ako na obrazku 1, ziskaného z Google
Maps pomocou volby type=satellite. Zobrazena je rovnakd adresa v centre
mesta Zilina

Volba type
Volba type moéze v mdéde osm nadobtdat niektort z troch hodnét map|sat |hyb
pre zobrazenie mapy, satelitnej snimky alebo hybridné zobrazenie mapy a sate-
litnej snimky. Pri nastaveni médu na hodnotu gm sa mozné hodnoty volitelného
argumentu type menia na roadmap|satellite|hybrid|terrain.

Na obrazku 3 ilustrujeme satelitny zaber rovnakého vyrezu centra mesta ako
na mapach na obrazkoch 1 a 2.

Volba overwrite

Ide o dolezity volitelny argument, ktory urcuje, ¢i sa pri jednotlivych kompilacidch
budu ziskané obrézky prepisovat alebo nie. Nastavuje sa na logické hodnoty
truel|false. Tento argument je uzito¢ny, ak menime definovany vyrez z mapy,
aby sme nemuseli manudlne odstranovat obrazky z predchadzajtcich kompilacii.
Naopak, jeho nastavenie na hodnotu false urychluje preklad, ak mame obrazkov
vela a st uz z predchadzajicich behov B TEXu vytvorené.

Volba xsize a ysize

Tieto volitelné hodnoty urcuji rozmery ziskaného obrézku v pixeloch, pricom
hodnota xsize urcuje jeho sirku a hodnota ysize urcuje jeho vysku. Implicitné
rozmery su nastavené na hodnoty 600 x 400, pricom hodnotu je mozné menit.
V rezime osm st pre oba rozmery horné hranice 3 840, kym slobodna verzia Google
maps je obmedzend na rozmery 640 x 640.

Vyznacovanie objektov na mapach

Na vyznacenie vyznamnych objektov ¢i orientacnych bodov na mape slizia tzv.
markery. Tieto sa definuji pomocou volitelného argumentu markers a ako hodnota

104

kultnd nemocnica
s poliklinikou o

= L,

Zilinsky %
Google fesopak iap it 2017 Google

Obrézok 4: Ukazka mapy okolia FRI ZU (marker F) s vyznacenim stravovacich
zariadeni{ ,Mildno* (marker M) a ,Kazafok“ (marker K)

je mu priradeny zoznam vsSetkych znaciek, ktoré maju byt vyznacené na mape.
Zoznam markerov sa uzatvara do zlozenych zatvoriek, pricom kazdy z nich je
definovany sekvenciou:

¥markers=size:mid|color:blue|label:S|locl|loc2|...|locn

Jednotlivé polozky potom definuju vlastnosti markerov. Hodnota parametra size
moze nadobudat hodnoty tiny,mid,small, pricom ako implicitnd hodnota sa
berie mid. Parameter color definuje farbu markera, ktorda moze byt zadana bud
pomenovanim alebo hexadecimalnym kédom. Parameter label urcuje znacku
vo vnutri markera (len pri velkosti mid). Pripustné si numerické znaky alebo
kapitalky. Hodnoty loc potom definuju lokalizdciu markera na mape.

Ukéazku mapy s vyznacenymi objektmi vidime na obrazku 4, kde je zobrazené
okolie Fakulty riadenia a informatiky a v jej blizkosti dve restauracie. Prislusny
kod prikazu \getmap vyzera takto:

\getmap [file=fricka,overwrite=true,mode=gm,
markers={&markers=size:mid|label:F|color:redl|
Fakulta riadenia a informatiky, 01008 Zilina, Slovakia%
&markers=size:mid|label:M|color:blue]
Obchodna 3269, 01008 Zilina, Slovakia,%
&markers=size:mid|label:K|color:blue]
Slovanska 3278, 01008 Zilina, Slovakial,%
visible={{49.16, 18.65}|{49.21, 18.45}}
13
V zdrojovom kéde si mozeme vSimnuf tiez argument visible. Jeho tlohou
je zabezpecenie zobrazenia takého vyrezu mapy, aby vsetky lokality uvedené
v zozname a oddelené zvislou ¢iarou boli na obrazku viditelné. Je ich mozné zadat
ako objekty alebo pomocou GPS stradnic.

105

ultna nemoenica
s poliklinikou o

@ L,

Zilinsky 5
Google Jesopark iapata 2017 Google

Obrézok 5: Ukazka mapy okolia FRI ZU (marker F) s vyznacenim stravovacich
zariadeni ,Mildno“ (marker M) a ,Kazacok“ (marker K) a trasy ku nim

Vyznacenie trasy

Casto je potrebné v mape vyznadit aj cestu, ako je mozné prejst od jedného
objektu ku druhému, pripadne viacero tras. Na tieto tcely ma prikaz \getmap
volitelny parameter path, ktory podobne ako markers ocakava zoznam URL
parametrov oddelenych zvislou ¢iarou v tvare:

&path=weight:5|color:orangel|locl|loc2]|...|locn

Hodnota weight udéava hribku ¢iary vyznacujicej trasu, color farbu tejto ciary
a ostatné hodnoty predstavuju lokalizacné tidaje. Lokalizacné tidaje je pri tom
mozné zadavat bud ako adresy alebo dvojicu GPS siradnic. Vyznacenie dvoch
tras je ilustrované na obrazku 5.

Prislusny zdrojovy kéd upravime takto:

\getmap [file=fricka3,overwrite=true,mode=gn,
markers={&markers=size:mid|label:F|color:red]|
Fakulta riadenia a informatiky, 01008 Zilina, Slovakia¥%
&markers=size:mid|label:M|color:bluel
Obchodna 3269, 01008 Zilina, Slovakia,%
&markers=size:mid|label:K|color:bluel
Slovanska 3278, 01008 Zilina, Slovakial},%
path={&path=weight:5|color:orange|Fakulta riadenia a informatiky,
01008 Zilina, Slovakial49.203912,18.763293|
49.208426,18.761190|0bchodna 3269, 01008 Zilina, Slovakia%
&path=weight:5|color:purple|Slovanska 3278, 01008 Zilina,
Slovakial|49.207304,18.768442|49.206660,18.766833 |
49.205117,18.768314149.203267,18.762885}1{}

106

Obrézok 6: Snimka FRI ZU zo sluzby ~ Obrazok 7: Satelitny zaber okolia
Google Street View FRI ZU

Obrazky Google Street View

Balicek getmap umoznuje vkladat do dokumentu aj fotografie, ziskané prostrednic-
tvom sluzby Google Street View. Na tieto tcely je potrebné pomocou volitelnych
argumentov nastavit sluzbu mode=gsv. Pre Specifikdciu zaberu si dolezité volby
heading, ktord uddva smer zaberu zo stanoveného miesta v rozpéti 0-360 (pre
sever pouzijeme hodnotu 0, pre vychod 90 atd.), pitch, ktora definuje uhol sklonu
kamery od vodorovnej roviny a udava sa v rozpéti od —90 po 90, a volba fov uda-
vajuca velkost rozsahu horizontalneho zaberu v stupnoch, a to v rozsahu 0-120.
Vsetky uvedené parametre st merané v stupnoch.

Tlustrujeme si to na obrazku fakulty. Prislusnt snimku ziskame napriklad
takymto prikazom:

\getmap [file=pfricka,mode=gsv,heading=120,fov=120,pitch=20,
xs1ze=600,ysize=450,scale=2,zoom=20,overwrite=true]
{49.202217,18.761407}

Vysledok potom vidime na obrazku 6. Na susednom obrazku 7 vidime satelitny
zaber okolia fakulty s vyznac¢enym bodom snimania.

Script getmapdl

Ako sme sa uz zmienili v ivode tohto prispevku, balicek getmap vlastne vyuziva
jeden Lua skript, ktory moze byt pouzity aj z prikazového riadku. Uplnt ndpovedu
ku skriptu ziskame z prikazového riadku obvyklym postupom, teda:

$ getmapdl -h

107

Z dostupnych prepinacov si uvedieme len niekolko najdolezitejsich:
-m urcuje mod, obvykle osm|gm|gsv,
-1 urcuje lokalitu,
-i urcuje format grafického suboru,
-o uréuje pomenovanie vystupného siiboru (bez pripony).
Ak to zhrnieme, potom pomocou prikazu
getmapdl -m gm -1 ’Narodna 25,01001 Zilina, Slovakia’ -i jpg -o zilina
ziskame rovnaky obrazok, ako je na obrazku 2 a vysledok bude ulozeny v siibore
zilina. jpg.

Zaver

V prispevku sme predstavili balicek getmap. Na ukazkach bolo demonstrované,
ako je do textu mozné zaradif nielen mapy ziskané zo sluzieb Open Street Map
alebo Google Maps, ale aj fotografie objektov ziskané pomocou Google Street
View.

Podakovanie

Tento prispevok vznikol s ldskavym prispenim grantu KEGA-011ZU-4/2014
L,2Experimentalna matematika — zviditelnenie neviditelného*“ podporeného Slo-
venskou kultirno-edukacnou grantovou agentirou.

Reference

[1] BLASKO, R.: BTgX nie je farba na malovanie, Otvoreny softvér vo vzdelé-
vani, vyskume a IT rieseniach, zbornik medzinarodnej konferencie OSSConf
2010, Zilina, 1.-4. jala 2010, str. 43-52, ISBN 978-80-970457-0-8, http:
//ossconf .soit.sk/images/zborniky/zbornik2010.pdf.

[2] BLASKO, R.: BTEX nie je farba na malovanie, ale na pisanie, Otvo-
reny softvér vo vzdeldvani, vyskume a IT rieSeniach, zbornik medzina-
rodnej konferencie OSSConf 2011, Zilina, 1.-4. jila 2011, str. 249-258,
ISBN 978-80-970457-1-5, http://ossconf.soit.sk/images/zborniky/
zbornik2012.pdf.

[3] KLEBER, J.: Downloading maps from OpenStreetMap, Google Maps or
Google Street View.

[4] KOPKA, H. - DALY, P. W.: BTgX - Podrobny privodce, Brno, Computer
Press, 2004, ISBN 80-722-6973-9.

108

[5] KOZUBIK, A.: Prezentacné materidly v triede Beamer, Zbornik prispevkov
z medzinirodnej konferencie OSSConf 2011, Zilina, 1.-4. jila 2011, str.
223-235, ISBN 978-80-970457-1-5.

[6] RYBICKA, J.: ETgX pro zacdtecniky, Brno, KONVOJ 2003, ISBN
80-7302-049-1.

(7] RYBICKA, J., CACKOVA, P., PRICHYSTAL J.: Priwodce tvorbou doku-
menti, Bucovice, Nakladatelstvi Martin St¥iz 2011, ISBN 978-80-87106-43-3.

[8] STRIZ, P.: Sazba v TgXu a kresba v METAPOSTu, Bucovice, Nakladatelstvi
Martin St¥iz 2011, ISBN 978-80-87106-51-8.

Summary: Maps in BTEX Documents —
an Introduction of the getmap Package

The aim of this article is to introduce the getmap package. This package allows to
include into the IWTEX documents the map materials obtained from the external
resources such as OpenStreetMap and Google Maps and even with the support
of Google Street View. In the simplest case, the specification of an address is
sufficient. The package loads the map using the \write18 feature, which must
be activated to use this package. The image will be downloaded by an external
Lua script that can be used also from the command line.

Keywords: Maps, ITEX, getmap, Lua

Katedra matematickyjch metod a operacnej analyzy,
Fakulta riadenia a informatiky, Zilinskd univerzita,
Univerzitng 8215/1, 010 26 Zilina, Slovenskd republika

109

Konference TUG@BachoTEX 2017

‘l Vit NovOoTNY I

Od soboty 29. 4. do stredy 3. 5. 2017 se u polského jezera Bachotek konala
spole¢na konference sdruzeni GUST a TUG.

Sobota 29. 4.

Prvni konferen¢ni den oteviel Hans Hagen prispévkem Children of TEX, ve kterém
se v souladu s konferenénim tématem ,,Premises, predilections, predictions® zao-
biral minulosti, soucasnosti a budoucnosti TEXu. Nasledujici prispévek Revealing
semantics using subtle typography and punctuation od Kumarana Sathasivama
se vénoval zptusobtm, jakymi je mozné obohatit interpunkci a prispét tak ke
zjednoznacnéni psaného projevu.

Po prestdvce na kavu navazal Frank Mittelbach prispévkem Through The
Looking Glass —and what Alice found there. .., ve kterém predstavil algoritmus
pro optimalizaci strankového zlomu a umistovani plovouciho obsahu; s timto
prispévkem obdrzel cenu ACM Best Paper Award na konferenci DocEng 2016.
V nésledujicim prispévku To justify or not to justify? Leila Akhmadeeva a Boris
Veytsman provedli experimentalni srovnani rychlosti ¢teni textu sdzeného do
bloku bez déleni slov a textu sazeného na praporek s délenim slov. Dopoledni
blok uzaviel Przemystaw Scherwentke s prispévkem ETEX restaurant, ve kterém
zrecenzoval knihu EXTEX, ksiazka kucharska.

Po sobotnim obédé nésledovalo N TEXové okénko, ve kterém se nejprve Barbara
Beeton v prispévku Debugging ETEX files — Illegitimi non carborundum podélila
o rady, jak systematicky Tesit chyby pti prekladu dokumentii, a nasledné Boris
Veytsman v prispévku Making ltzsparklines package: A journey of a CTAN con-
tributor into the world of CRAN predstavil knihovnu v jazyce R, kterd umoznuje
generovat vstup pro ETEXovy balicek sparklines na tvorbu Tufteho sparkline
graf.

Po prestavce na kavu nésledoval prispévek Grzegorze Murzynowského The
GM-Scenarios two years later. A complete madness. But— Turing-complete or
not? Or: how the spirit of l3expan made me conceive and bear a monster o
zménach v BTEXovém balicku GM-Scenarios, ktery nad jazykem expl3 buduje
framework pro fizenou expanzi argumentt maker. Na zavér odpoledniho bloku
referovali Jean-Michel Hufflen v prispévku MIBibTEX Now Deals with Unicode
o vyvoji bibliografického preprocesoru MIBibTEX a autor tohoto ¢lanku v pri-
spévku Typesetting Bibliographies Compliant with the International Standard

110 por: 10.5300/2017-1-2/110

Obrézek 1: Skupinova fotografie i¢astniki konference

I50-690 in B'TEX o balicku biblatex-iso690 od Michala Hofticha a Déavida
Luptéka pro sazbu citaci a referenci podle normy ISO 690:2010. Na zavér prvniho
konferencniho dne se konal tdborovy ohen.

Nedéle 30. 4.

Druhy konferen¢ni den byl vénovan workshopum. Po snidani se konal dvodni
kurz jazyka ConTEXt pod ndzvem ConTgXt: tutorial/workshop (for ConTgXt
beginners), jenz vedli Willi Egger a Mojca Miklavec. Po obédé byla pofizena
skupinova fotografie. Nasledoval pracovni seminar Bookbinding workshop: portfolio
od Williho Eggera na vyrobu papirovych desek s klopami a pracovni seminar
Hackaton: documenting BTEX packages od Damiena Thirieta, béhem kterého
byla doplnéna dokumentace oblibenych I TEXovych balickii.

Po prestavce na kavu prednesli Maciej Rychly a Piotr Bolek piispévek Released
sounds o hudbé zachycené formou notového zapisu v historickych malbach; na
prispévek navazali Maciej a Mateusz Rychty hudebnim predstavenim. Po veceri
nasledovalo vyrocni zasedani sdruzeni TUG a GUST. Novym prezidentem sdruzeni
TUG byl zvolen jediny kandidét, Boris Veytsman. Cleny spravni rady TUGu
byli do roku 2021 zvoleni Karl Berry, Johannes Braams, Kaja Christiansen, Taco
Hoekwater, Klaus Héppner, Frank Mittelbach, Ross Moore, Arthur Reutenauer,
Will Robertson a Herbert Vofi. Po zasedani se omezeny pocet zdjemct se mohl
zucastnit degustace piv z malych pivovaru vedené Michalem Gasewiczem v ramci
seminafe Off topic (completely): Many faces (and types) of beer.

111

Obrézek 3: Pracovni seminai na vyrobu papirovych desek od Williho Eggera

112

Obrazek 4: Demostrace kombinovatelnosti znaki emoji na rodinnych piislusnicich
Hanse Hagena

Pondéli 1. 5.

Treti konferencni den se tocil predevsim kolem pisma. Po snidani referoval Ulrik
Vieth o poslednich deseti letech vyvoje matematickych OpenType fonta a Jerzy
Ludwichowski o aktualnich projektech pismolijny GUST’s e-foundry; na zakladé
vysledkil posledni vyborové schiize (T'UGu bude sdruzeni (FTUG pismolijné
v letech 20172019 prispivat ro¢ni ¢astkou 1000 EUR. V nésledujicim prispévku
Xdvipsk: dvips ready for OpenType fonts and more image types predstavil Si-
gitas Tolusis xdvipsk—verzi programu dvips s podporou OpenType fontu a
bitmapovych obrazku.

Po prestavce na kavu predstavil v prispévku Variable and color OpenType
fonts: chances and challenges Adam Twardoch mechanismy forméatu OpenType,
kterymi je mozné vytvaret vicebarevné a multiple-master fonty (tzv. variable
fonts); css rozhrani variable fonts demonstruje webova stranka axis-praxis.org.
V nasledujicich dvou prispévcich predélenych obédem pod nazvem Colorful fonts,
an update and peek into the future a Variable fonts se Hans Hagen vénoval znakam
emoji, mechanismu variable fonts a jejich implementaci v systému ConTEXt.

113

Obrazek 5: Doprovod ke konferen¢ni veceri zajistila skupina Katarzyny Jackowské

Na zacatku odpoledniho bloku prezentoval Bogustaw Jackowski v ptispévku
Parametric math symbol font postup, kterym lze z textovych font odvozovat
fonty matematické. Po prestavce na kdvu nésledoval prispévek Adama Twardoch
STIX, Fira, Noto and friends: beautiful new opensource fonts o existujicich
svobodnych fontech. V zavére¢nych dvou prispévcich nazvanych One rule to break
them all a Automating binary building for TgX Live referovala Mojca Miklavec
o mozném budoucim vyvoji vzoru déleni slov a o automatické kompilaci programu
pro TgX Live. Den byl uzavien konferenéni veceti, v ramci které se slavilo 25.
vyroc¢i konferenci sdruzeni GUST. Hudebni doprovod k jidlu i k tanci zajistila
skupina Katarzyny Jackowské.

Utery 2. 5.

Ctvrty konferenéni den oteviel Siep Kroonenberg piispévkem The TpX Live
Launcher, ve kterém predstavil spousté¢ komponent sitové instalace TEX Live pro
operacni systémy MS Windows. V nasledujicim prispévku Fmtutil and updmap —
past and future changes (or: cleaning up the mess) popsal Norbert Preining
zmény v rozhrani néstroji fmtutil a updmap v distribuci TEX Live 2017. Ranni

114

blok uzavtel Luigi Scarso prispévkem MFLua 0.8, ve kterém referoval o vyvoji
programu MFLua; ten nyni umoznuje spousténim kédu v jazyce Lua z MetaFontu
piimo generovat OpenType fonty.

Po prestévce na kavu nasledoval prispévek Takuto Asakury Implementing
bioinformatics algorithms in TgX-Gotoh package, a case study o ETEXovém
balicku Gotoh pro vypocet podobnosti DNA sekvenci pomoci Gotohova algoritmu a
pro vizualizaci tohoto vypoctu. V nasledujicim prispévku TEX users habits versus
publishers requirements Lolita Tolené analyzovala trendy pouziti I TEXovych
balickd v dokumentech zpracovavanych spolec¢nosti VTeX a predstavila problémy
pojici se s prevodem ATEXovych dokumentti do formdtu xMmL. Dopoledni blok
uzavteli Petr Sojka prispévkem TgX in Schools? Just Say Yes: the Use Case of
TEX Usage at the Faculty of Informatics, Masaryk University shrnujicim historii
vyuziti TEXu na Fakulté informatiky Masarykovy univerzity v Brné a autor tohoto
clanku prispévkem Using Markdown Inside TEX Documents predstavujicim balicek
markdown.tex pro pripravu dokumenti pomoci znackovaciho jazyka Markdown.

Po obédé referoval Jean-Michael Hufflen v prispévku History of accidentals in
music o historii posuvek pouzivanych v notovém zépisu a Andrzej Tomaszewski
popsal v prispévku An example of a humanist scholarly book proces grafického
névrhu knihy s piekladem Ovidiovy basné Halieutica o rybach Cerného mofe.

Po prestdvce na kavu probéhla diskuze o zpusobech konverze dokumenti
v jazycich Markdown a ¢SS do tisknutelného vystupu ve formatu PDF v ramci
prispévku CORDIDA! Collaborative Opensource Rapid Digital Internet Documen-
tation Authoring Adama Twardocha. Nésledovala diskuze v ramci piispévku TpX
Annoyances —what is on the way to a full production environment Paula de Ney
Souza o soucasnych problémech TEXu, jako je pomaly béh kompilatoru LuaTgX,
nedostatecnd podpora mikrotypografickych rozsiteni v kompildtoru XgTEX a
neuspokojivé vysledky I&#TEXového balicku hyperref pii sazbé hypertextovych
odkazll v misté strankového zlomu. Na zavér konferenéniho dne Paulo de Ney
Souza referoval v prispévku TgX Production —ePub the new target o vystupnim
formatu ePub a Zunbeltz Izaola predstavil v ptispévku DocVar: manage document
variables WTEXovy balicek DocVar pro spravu metadat spojenych s dokumentem.

Stfeda 3. 5.

Paty konferenc¢ni den otevtel Jerzy Ludwikowski prispévkem TgX at secondary
schools —an idea to be taken up by GUST. V ném predstavil ndvrh Anny Kwiat-
kowské, podle kterého by sdruzeni GUST mélo ptipravit studijni materidly pro
vyuku TEXu na stfedni skole Liceum i Gimnazium Akademickie v Toruni. N&-
sledné predstavil Marcin Wolinski I#TEXovy balicek bredzenie.sty pro sazbu
polského vypliového textu, ktery je generovan pomoci jazykovych modeld. Konfe-
renci uzavrel Marcin Borkowski prispévkem What can a TgXnician learn from ten

115

years’ editorial work o vyuziti textového editoru Emacs pri redigovani ¢asopisu
Wiadomoéci Matematyczne.
Fotografie do ¢lanku laskavé poskytl Frans Goddijn.

Summary: Conference TUG@BachoTgX 2017

The article is a summary report of the TUG@BachoTEX 2017 conference, which
was held from April 29 to May 3 joinly by GUST and TUG at Bachotek near
Brodnica, Poland.

Vit Novotny, witiko@mail. muni.cz

116

Zpravodaj Ceskoslovenského sdruzeni uzivateltt TEXu
ISSN 1211-6661 (tiSténd verze), ISSN 1213-8185 (online verze)

Vydalo: Ceskoslovenské sdruzeni uzivatelit TEXu vlastnim
nakladem jako interni publikaci

Obélka: Antonin Strejc

Tlustrace na obdlce: Hans Hagen

Pocet vytiski: 310

Uzavérka: 31.7.2017

Odpovédny redaktor: Jan Sustek

Redakéni rada: Pavel Haluza, Lukas Novotny, Vit Novotny,

Michal Rizicka a Jan Sustek (3éfredaktor)
Technicka redakce: Vit Novotny
Evidencéni ¢islo MK: E 7629

Tisk: ASMETI, Klasterni 1187, 73511 Orlova
Adresa: GTUG, Nejedlého 373/1, 638 00 Brno
Email: cstug@cstug.cz

Ziizené postovni aliasy sdruzeni (§T'UG:
bulletin@cstug.cz, zpravodaj@cstug.cz

korespondence ohledné Zpravodaje sdruzeni
board@cstug.cz

korespondence ¢lenum vyboru
cstug@cstug.cz, president@cstug.cz

korespondence predsedovi sdruzeni
gacstug@cstug.cz

grantova agentura GGI'UGu
secretary@cstug.cz, orders@cstug.cz

korespondence administrativni sile sdruzeni, objednavky CD a DVD
cstug-members@cstug.cz

korespondence ¢lenim sdruzeni
cstug-faq@cstug.cz

fesené otdzky s odpovédmi navrhované k zarazeni do dokumentu (gFAQ
bookorders@cstug.cz

objednavky tisténé TEXové literatury na dobirku
ftp server sdruzeni:

ftp://ftp.cstug.cz
www server sdruzeni:

http://www.cstug.cz

CONTENTS

Petr Sojka: Introduction oL o o 1
Hans Hagen: CONTEXT-LUA Documents 3
Hans Hagen: Exporting XML and ePub from CONTEXT 55
Hans Hagen, Idris Samawi Hamid: Oriental TEX: Optimizing Paragraphs 64
Taco Hoekwater: MetaPost: PNG Output 98
Ales Kozubik: Maps in BTEX Documents —

an Introduction of the getmap Package 101

Vit Novotny: Conference TUG@BachoTEX 2017 110

